This document is downloaded at: 2017-09-08T00:13:01Z

Title
Is low central venous pressure effective for postoperative care after liver transplantation?

Author(s)
Eguchi, Susumu

Citation
Surgery Today, 43(7), pp.828-829; 2013

Issue Date
2013-07

URL
http://hdl.handle.net/10069/33990

© 日本外科学会; The final publication is available at link.springer.com

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Editorial:

Is low central venous pressure effective for postoperative care after liver transplantation?

Susumu Eguchi, MD, FACS, FEBS,

Dept of Surgery, Nagasaki University Graduate School of Biomedical Sciences,

1-7-1 Sakamoto, Nagasaki, 852-8501, Japan

Tel: 81-95-819-7316, Fax: 81-95-819-7319, e-mail: sueguchi@nagasaki-u.ac.jp
The central venous pressure (CVP) has been regarded as an important factor in reducing blood loss and the blood transfusion rate during major hepatectomy, and can be controlled by positive end-expiratory pressure (PEEP) or certain drugs and positioning of the patient (1-4).

In this issue of Surgery Today, Wang et al. describe the beneficial effects of lowering the CVP for achieving a better postoperative outcome compared with conventional fluid management in deceased donor liver transplantation based on a prospective randomized controlled study (5). They report that the low CVP group showed 1. less intraoperative blood loss, 2. a decreased need for intraoperative blood transfusion, 3. fewer lung-related complications at one month postoperative, 4. a shorter intubation period and 5. equal patient survival at one year after liver transplantation. A previous retrospective study showed that intraoperative blood transfusion was a risk factor for postoperative lung complications (6). The present study was done in a prospective, randomized manner, which yielded the same results as those seen in the previous retrospective study. The methods used to reduce CVP in the present study were the use of the Fowler position, fluid restriction, and drugs (e.g. nitroglycerin, furosemide and somatostatin). These methods have also been used in previous studies to reduce the intraoperative CVP, and therefore appeared to be valid for this kind of study (7).
Although the results provided in the article were of high importance, lowering the CVP during liver transplantation might still be controversial and may have ambivalent aspects with regard to the lack of a relationship between the early complication rates, including renal, hepatic, and pulmonary complications, and CVP following liver transplantation. (8-11). For example, apart from the reduced pulmonary complication rate, and the lower blood loss and blood transfusion rate, what would be the influence of lowering the CVP on the postoperative care following liver transplantation? If blood product administration during the intensive care period is increased, then the policy to limit CVP during surgery would be in vain. Therefore, the readers will also want to know: How would the perfusion in the organ be affected? How would the lactate level in the blood after LT be affected, not only at the end of surgery, but also during the postoperative period? How would the post-transplant blood product requirements be affected?

In fact, the period in which the CVP is lowered may be of importance. For example, Feng et al. reported that a low CVP during the pre-anhepatic phase reduced the intraoperative blood loss, protected the liver function, and had no detrimental effects on renal function after LT (8). On the other hand, Cywinski et al. reported that a low CVP during the post-anhepatic phase was not associated with any benefit in terms of
immediate postoperative allograft function, graft survival or patient survival (11). In addition, the cut-off value of CVP monitoring in previous studies varied between 5 and 10 mmHg.

We await further reports from other investigators before drawing any definitive conclusions about the above-mentioned issues, since liver transplant surgery, especially partial liver transplantation, is often affected by multiple factors (12).

References


