This document is downloaded at: 2018-12-14T23:33:32Z

Title
Wounds with complicated shapes tend to develop infection during negative pressure wound therapy

Author(s)
Fujioka, Masaki; Hayashida, Kenji; Senjyu, Chikako

Citation
Wound Medicine, 4, pp.5-8; 2014

Issue Date
2014-02

URL
http://hdl.handle.net/10069/34384

Right
© 2013 Elsevier GmbH.; NOTICE: this is the author's version of a work that was accepted for publication in Wound Medicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Wound Medicine, 4, (2014)
Wounds with complicated shapes tend to develop infection during negative pressure wound therapy

Masaki Fujioka, M.D., Ph.D.

Kenji Hayashida, M.D.

Chikako Senjyu, M.D.

Dr. Fujioka is the Clinical Professor of the Department of Plastic and Reconstructive Surgery, Nagasaki University, Nagasaki, Japan, and Director of the Department of Plastic and Reconstructive Surgery Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan.

Drs. Murakami and Hayashida are staff surgeons of the Department of Plastic and Reconstructive Surgery, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan.

Address correspondence to: Fujioka Masaki, M.D., Ph.D.

Department of Plastic and Reconstructive Surgery,

National Hospital Organization Nagasaki Medical Center.

1001-1 Kubara 2 Ohmura City, Japan, postal code 856-8562

Tel. +81-0957-52-3121 Fax. +81-0957-54-0292

E-mail mfujioka@nmchosp.go.jp
Abstract

**Introduction:** While negative pressure wound therapy (NPWP) has been shown to be useful, we felt that patients with wounds of complicated shapes were likely to develop infection during performing NPWT. We conducted an investigation to determine the factors of wound shape responsible for the occurrence of infection. **Materials and Methods:** A total of 55 patients with wounds were treated using NPWT in our unit in 2011. Eight whose wounds formed a pocket, 7 whose wounds were deep, and 40 whose wounds did not come under the above 2 types were eligible for this retrospective study. **Results:** Fifteen patients (27.3%) with NPWT showed a relapse of local infection. Six of the 8 patients (75.0%) in the wound with pocket group, 5 of the 7 (71.4%) in the deep wound group, and 4 of the 40 (10.0%) in the other wounds developed infection. The wound infection development ratio of the wound with pocket and deep wound groups was significantly higher than that of the other wound group. **Conclusion:** Wounds with complicated shapes are more likely to develop infectious complications during the management of NPWT. More careful observation is required when negative pressure therapy is used for wounds with a complicated shape.

**Highlights:** Wounds with complicated shapes are likely to develop infection during NPWT.

**Key words:** Wounds with complicated shapes, wound infection, negative pressure wound therapy, vacuum-assisted closure therapy, wound geometry
Complicated wound geometry develop infection during NPWT

1 **Abbreviations**:

2 Negative pressure wound therapy, NPWT

3

4 **Acknowledgments**:

5

6 **Running head**: Complicated wound geometry develop infection during NPWT
Complicated wound geometry develop infection during NPWT

Introduction

Negative pressure wound therapy (NPWT) of infected wounds has recently gained popularity among various surgical specialties [1-3]. This system is based on the application of negative pressure by controlled suction to the wound surface. The effectiveness of the NPWT for microcirculation and the promotion of granulation tissue proliferation owing to removing excessive exudates, increasing blood flow, and decreasing bacterial colonization has been verified. Thus, it has allowed uncomplicated wounds to heal quickly [4]. However, it sometimes leads to local wound infection, including: erythema, swelling, increased pain, exudates or pus, and fever, which can cause long-term distress for the patient, increase the hospitalization time, and, consequently, decrease the quality of life. In our experience, we have seen an increased tendency of wounds with complicated shapes to develop infection during NPWT.

The present study investigates this by comparing patients who underwent NPWT with deep wounds, wounds with large pockets, and shallow wounds without pockets.

Patients and Methods

NPWT has been employed in our department since 2011 as a device to bridge the period between debridement and definite surgical closure in full-thickness wounds. A total of 575 patients with wounds (acute wounds: 345, chronic wounds: 230) were treated in the Department of Plastic and Reconstructive Surgery, National Organization Nagasaki Medical Center, in 2011. Of these patients, 55 underwent negative pressure wound therapy using the Vacume-Assisted Closure
Complicated wound geometry develop infection during NPWT System (V.A.C.ATS®, KCI Inc. San Antonio, TX, USA). Wound diagnoses of patients who received NPWT are shown in Figure 1. All participants received surgical debridement, as well as nutrition and hemodynamic support. After debridement, cleansing and wet-to-dry dressing or continuous irrigation were performed for several days. After recognizing symptoms of infection disappeared, subatmospheric pressure (125 mmHg below ambient) was applied and transmitted to the wound continuously using a pump. We used black foam. In cases wounds formed a pocket with over-hanging skin, the form was not inserted to the pocket, but laid over the area of ulcer to stick the inner wall of pocket firmly each other.

The dressing foam was usually changed every 48 hours; however, this varied depending on the presence of infection. As no wounds showed inflammatory signs at the initiation of NPWT, no patients were administered antibiotics during NPWT use. The diagnosis of wound infection was based on the clinical signs and symptoms of the patient, including: erythema or skin discoloration, edema, warmth, induration, increased pain, purulent wound exudate, elevated temperature, and elevated white blood cell count.

Of these patients, 8 whose wounds formed a pocket with more than 1 cm of over-hanging skin (wound with pocket group), 7 whose wounds were deep, extending to the bone or penetrating into the muscle (deep wound group), and 40 whose shallow wounds were without a pockets (other group) were eligible for this retrospective study (Figure 2). In this study, wound with pocket group was defined as having a more than 1 cm of over-hanging skin to differentiate wounds with pocket
Complicated wound geometry develop infection during NPWT

Results

Fifteen of the 55 patients (27.3%) with NPWT showed a relapse of local infection. Patients developing infection ranged in age from 31 to 84 years (mean age, 57.5 years), and patients without infection ranged in age from 8 to 95 years (mean age, 51.5 years) (no significant difference, Wilcoxon rank sum test). The etiology of wounds in patients with and without wound infection is shown in Table 1. There was no significant difference between the groups for each cause of wound (p>0.05, Chi-square test). The locations of wounds in patients with and without wound infection are shown in Table 2. There was no significant difference between the groups in each wound location (p>0.05, Chi-square test). Complications which may influence the development of infection, such as diabetes mellitus, renal failure, collagen disease, cancer, and steroid usage, in patients with and without wound infection are shown in Table 3. There was no significant difference between the groups for each complication (p>0.05, Chi-square test).

Six of the 8 patients (75.0%) in the wound with pocket group, 5 of the 7 (71.4%) in the deep wound group, and 4 of the 40 (10.0%) in the other group developed infection. The patients’ sex, age, characters of wounds, location, and the interval between the start of NPWT and the development of infection are shown in the Table 4. The mean number of negative pressure wound therapy treatment days was 10 (range: 1 to 19). The wound infection development ratio of the wound with
Complicated wound geometry develop infection during NPWT

Discussion

NPWT has become a widely accepted device to assist in optimizing the management of open wounds [1-3, 5]. The application of controlled subatmospheric pressure promotes wound healing by removing excessive exudates, increasing blood flow, and decreasing bacterial colonization [4, 6].

However, with the widespread use of this technique, some related complications after and during NPWT have been described, including: wound infection due to sponge retention, massive bleeding, infectious erosion of aorta, and severe soft tissue infection [17-10]. Our study showed that 27.3% of patients with NPWT had relapsed local infection. According to the wound shapes, wounds with complicated shapes were significantly more likely to develop infection compared to those with a simple shape.

Generally, all open wounds have bacteria and many wounds involve colonization, and the amount of bacteria can be minimized through adequate cleaning of the wound, absorption of drainage, and debridement if necessary [11]. Mouës et al. performed a clinical trial to compare the efficacy of vacuum therapy with conventional moist gauze therapy, and concluded that vacuum therapy does not decrease the number of bacteria colonizing the wound. When a bacterial colony develops in an open wound during NPWT, it can be controlled by the removal of exdate, improvement of blood supply, and stimulation of the cellular proliferation of reparative granulation tissue [12]. However, these benefits of NPWT may cause the growth of a bacterial colony, resulting in the wound infection
Complicated wound geometry develop infection during NPWT

in cases involving complicated shapes. The proliferation of granulation and tight contact owing to
the negative pressure facilitate early wound adhesion, especially, in the inner wall of a pocket and
narrow fistulae of a deep wound. This phenomenon may confine the bacterial colony to the
granulation, which can represent a focus of infection, because an entrapped bacterial colony cannot
be cleansed and exudate cannot be drained. Consequently, wound infection develops as the
bacterial colony worsens to the critical colonization level (Figure 3). The same mechanism is
thought to be a cause of deep wound infection. When early closure of the superficial layer of a
deep wound occurs due to insufficient insertion of the sponge, the entrapped bacterial colony will
induce wound infection (Figure 4). Citak et al. reported a case of necrotizing fasciitis in a patient
who underwent NPWT for the treatment of a deep pressure ulcer, and concluded that the use of
NPWT for grade four sores may have deleterious consequences for the patient [10]. This
complication also developed in a case with a deep wound. The sponge should be inserted into the
pocket while not allowing the walls to adhere to reduce the risk of wound infection. Besides, if foam
removal is not performed properly, a retained piece of sponge may also result in a focus of wound
infection (Figure 4) [4]. Careful washing and observation are required at dressing change.

We believe that only careful inspection on dressing change and the clinical monitoring of patients'
conditions may prevent such local infection. We are not of the opinion that NPWT should never be
applied for wounds with complicated shapes. However, when infectious signs are noted, cleansing,
wet-to-dry dressing or irrigation, and surgical debridement if necessary should be performed
Complicated wound geometry develop infection during NPWT following discontinuation of NPWT. Negative pressure wound therapy with continuous irrigation should be recommended for the treatment of wounds with complicated shapes at first.

**Conclusion**

NPWT technique is a straightforward and effective means of wound management. However, complicated shapes of wound are more likely to develop infectious complications during the management of NPWT. More careful wound observation is required to discover the signs of infection in an early stage.

**Disclosures:** This manuscript has not benefited from any source of funding support or grant, and the authors have no conflicting financial interest.

**Ethical Considerations:** The procedures were in accordance with the Ethical Standards and Internal Review Board of our institutional committee (National Hospital Organization Nagasaki Medical Center) on human experimentation in 2011.
References


Complicated wound geometry develops infection during NPWT


1 **Legends**

2 Table 1: The cause of wounds in patients with and without wound infection

3 Table 2: The location of wounds in patients with and without wound infection

4 Table 3: The complications which influence on development of infection in patients with and without wound infection

5 Table 4: Cases of wound infection development during NPWT

6 Figure 1: Wound diagnosis in patients who received NPWT (N=55)

7 Figure 2: Wound shape in patients who received NPWT

8 Figure 3: Mechanism of infection development in wounds with a pocket during NPWT

9 Figure 4: Mechanism of infection development in deep wounds during NPWT

Complicated wound geometry develop infection during NPWT
Table 1.
The cause of wounds in patients with and without wound infection

<table>
<thead>
<tr>
<th></th>
<th>Pressure ulcer</th>
<th>Infection</th>
<th>Trauma</th>
<th>Ischemia</th>
<th>Chronic ulcer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection (15)</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Non-infection (40)</td>
<td>9</td>
<td>14</td>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2.
The location of wounds in patients with and without wound infection

<table>
<thead>
<tr>
<th></th>
<th>Buttock</th>
<th>Extrimities</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection (15)</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Non-infection (40)</td>
<td>7</td>
<td>26</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3.
The complications which influence on development of infection in patients with and without wound infection

<table>
<thead>
<tr>
<th></th>
<th>Diabetes mellitus</th>
<th>Renal failure</th>
<th>Collagen disease</th>
<th>Cancer</th>
<th>Steroid usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection (15)</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Non-infection (40)</td>
<td>17</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
### Table 4.
Cases of wound infection development during NPWT

<table>
<thead>
<tr>
<th>Case</th>
<th>Shape of wound</th>
<th>Sex</th>
<th>Age</th>
<th>Wound</th>
<th>Location</th>
<th>NPWT duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pocket</td>
<td>M</td>
<td>75</td>
<td>Pressure ulcer</td>
<td>Sacrum</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Pocket</td>
<td>M</td>
<td>31</td>
<td>Pressure ulcer</td>
<td>Ischial tuberosity</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Pocket</td>
<td>M</td>
<td>57</td>
<td>Pressure ulcer</td>
<td>Ischial tuberosity</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Pocket</td>
<td>F</td>
<td>78</td>
<td>Sacral pressure ulcer</td>
<td>Sacrum</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Pocket</td>
<td>M</td>
<td>43</td>
<td>Abscess</td>
<td>Iliopsoas</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Pocket</td>
<td>M</td>
<td>54</td>
<td>Pressure ulcer</td>
<td>Sacrum</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Deep</td>
<td>F</td>
<td>40</td>
<td>Osteomyelitis</td>
<td>Trochanter</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>Deep</td>
<td>F</td>
<td>72</td>
<td>Post-surgical wound infection</td>
<td>Abdomen</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Deep</td>
<td>F</td>
<td>74</td>
<td>Osteomyelitis</td>
<td>Foot</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Deep</td>
<td>M</td>
<td>61</td>
<td>Intra-muscular abscess</td>
<td>Thigh</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Deep</td>
<td>F</td>
<td>54</td>
<td>Gas gangrene</td>
<td>Leg</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Others</td>
<td>M</td>
<td>8</td>
<td>Laceration</td>
<td>Knee</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>Others</td>
<td>F</td>
<td>88</td>
<td>Ischemic necrosis</td>
<td>Toe</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Others</td>
<td>M</td>
<td>70</td>
<td>Chronic ulcer</td>
<td>Leg</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>Others</td>
<td>M</td>
<td>65</td>
<td>Pressure ulcer</td>
<td>Heel</td>
<td>12</td>
</tr>
</tbody>
</table>
Figure 1: Wound diagnosis in patients who received NPWT (N=55)
Figure 2: Wound shape in patients who received NPWT

1. Wound with a large pocket (more than 1 cm) (N=8)
2. Deep wound extending to the bone or penetrating into the muscle (N=7)
Figure 3: Mechanism of infection development in wounds with a pocket during NPWT
Figure 4: Mechanism of infection development in deep wounds during NPWT