<table>
<thead>
<tr>
<th>Title</th>
<th>Magnetic properties of isotropic and anisotropic SmCo5/α-Fe nanocomposite magnets with a layered structure simulated by micromagnetic theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Horikawa, Ryo; Fukunaga, Hirotoshi; Nakano, Masaki; Yanai, Takeshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Applied Physics, 115(17), 17A707; 2014</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-05-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/34737</td>
</tr>
<tr>
<td>Right</td>
<td>© 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.</td>
</tr>
</tbody>
</table>
Magnetic properties of isotropic and anisotropic SmCo$_5$/α-Fe nanocomposite magnets with a layered structure simulated by micromagnetic theory

R. Horikawa,a) H. Fukunaga, M. Nakano, and T. Yanai
Graduate school of Engineering, Nagasaki University, Nagasaki, Nagasaki 852-8521, Japan

(Presented 5 November 2013; received 23 September 2013; accepted 15 October 2013; published online 13 January 2014)

Magnetic properties of anisotropic and isotropic SmCo$_5$/α-Fe nanocomposite magnets with a layered structure were computer-simulated with varying the stacking period, the α-Fe fraction, and temperature. The $(BH)_{\text{max}}$ values of approximately 800 and 700 kJ/m3 were achieved for anisotropic magnets at 300 and 473 K, respectively. These values roughly agree with results for SmCo$_5$/α-Fe with a core-shell structure, and the value at 473 K is much higher than that of Nd$_2$Fe$_{14}$B/α-Fe with a layered structure. For isotropic magnets, the largest H_c values were obtained for the stacking periods of approximately 20 and 25 nm at 300 and 473 K, respectively. The achieved $(BH)_{\text{max}}$ values were approximately 300 and 250 kJ/m3 at 300 and 473 K, respectively. The behavior of H_c was discussed in terms of the ratio of exchange energy to magnetic anisotropy one.

I. INTRODUCTION

Nanocomposite magnets are hopeful candidates for next generation magnets. Because of high Curie temperatures of Sm-Co alloys, a Sm-Co/α-Fe nanocomposite magnet is expected to possess superior magnetic properties at high temperatures. The high magnetocrystalline anisotropy of Sm-Co alloys enables the presence of a large amount of α-Fe in the magnet while necessitating a small grain size. Therefore, the microstructural design is an important issue in developing Sm-Co/α-Fe magnets. First-principle calculations have been reported on effects of microstructure on magnetic properties of Sm-Co/α-Fe powders and layered structures. We have already calculated the temperature dependence of the magnetic properties of SmCo$_5$/α-Fe nanocomposite magnets with the core-shell structure and have revealed that the achievable $(BH)_{\text{max}}$ value of SmCo$_5$/α-Fe ones at 473 K is much higher than that of Nd$_2$Fe$_{14}$B/α-Fe ones. The temperature dependence of H_c for the SmCo$_5$/Sm$_2$Co$_{17}$ magnets also have been calculated. Experimentally, $(BH)_{\text{max}}$ values exceeding the theoretical limit of SmCo$_5$ have been achieved. It has been also reported that a Sm-Co/α-Fe multi-layered thick film-magnet has a small temperature coefficient of H_c, approximately -0.3%/K. These experimental results suggest the importance of Sm-Co/α-Fe multi-layered magnets, and the clarification of potential of a Sm-Co/α-Fe layered structure is needed for further investigations.

In this contribution, we calculated magnetic properties at room and high temperatures for isotropic as well as anisotropic SmCo$_5$/α-Fe nanocomposite magnets with a layered structure by the micromagnetic simulation.

II. SIMULATION MODEL AND METHOD

We assumed the model magnet shown in Fig. 1(a) in which SmCo$_5$ and α-Fe layers are stacked periodically. The simulation was carried out for the cubic region shown in Fig. 1(b) which was divided into 32 768 elements.

In anisotropic magnets, we assumed the in-plane uniaxial magnetic anisotropy for the SmCo$_5$ layer. The stacking periods, t_s, were set to 8 and 16 nm, and the thickness ratio of SmCo$_5$ layer to α-Fe one was varied. An external field was applied in the in-plane direction. The isotropic model was composed of 32 SmCo$_5$ cubic grains and non-anisotropic α-Fe layer. The easy directions of magnetization of SmCo$_5$ grains were determined by the random function so that the average of $\cos \theta$ becomes 0.5, where θ is the angle between the easy direction of magnetization and the applied field. The thickness ratio of SmCo$_5$ layer to α-Fe one was set to 1 and t_s was varied. The calculation was carried out for five model magnets prepared by different series of random numbers.

The simulation parameters of SmCo$_5$ and α-Fe at 300 and 473 K were reported elsewhere. Those of Nd$_2$Fe$_{14}$B were cited from Ref. 12, and shown in Table I. The detailed method of determining parameters at 473 K was also reported elsewhere. The exchange constant J_{ex} at the interface between Nd$_2$Fe$_{14}$B and α-Fe was assumed to be 1.6×10^{-3} J/m2, and

![Fig. 1. Simulation model.](Image)
the same value was assumed for J_{sh} at the interface between SmCo$_5$ and α-Fe.

III. RESULTS AND DISCUSSION

A. Anisotropic SmCo$_5$/\α-Fe magnets

Figure 2 shows the coercivity H_c of SmCo$_5$/\α-Fe nanocomposite magnets at 300 K as a function of the α-Fe fraction f_{Fe}, together with the results for Nd$_2$Fe$_{14}$B/α-Fe. The stacking periods t_s were set at 8 and 16 nm. H_c rapidly decreased with increasing f_{Fe} for both the SmCo$_5$/\α-Fe and Nd$_2$Fe$_{14}$B/α-Fe magnets. It should be noted that H_c of SmCo$_5$/\α-Fe magnets is higher than that of Nd$_2$Fe$_{14}$B/α-Fe ones for all the f_{Fe} values investigated.

Figure 3 shows $(BH)_{max}$ of anisotropic SmCo$_5$/\α-Fe at 300 K as a function of f_{Fe}, together with results for Nd$_2$Fe$_{14}$B/α-Fe ones. The stacking periods were set at 8 and 16 nm.

B. Isotropic SmCo$_5$/\α-Fe magnets

Figure 5 shows H_c at 300 and 473 K as a function of t_s. The averaged H_c values for five models and error bars were shown in the figure. The thickness ratio of α-Fe to SmCo$_5$ layers was set at 1.

TABLE I. Simulation Parameters of Nd$_2$Fe$_{14}$B at 300 and 473 K.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>M_s (T)</th>
<th>K_u (kJ/m3)</th>
<th>A (10^{-11} kJ/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.61</td>
<td>4.5</td>
<td>0.87</td>
</tr>
<tr>
<td>473</td>
<td>1.19</td>
<td>1.64</td>
<td>0.48</td>
</tr>
</tbody>
</table>

FIG. 2. Coercivity of anisotropic SmCo$_5$/\α-Fe nanocomposite magnets at 300 K as a function of \α-Fe fraction, together with results for Nd$_2$Fe$_{14}$B/α-Fe ones. The stacking periods were set at 8 and 16 nm.

FIG. 3. $(BH)_{max}$ of anisotropic SmCo$_5$/\α-Fe nanocomposite magnets at 300 K as a function of \α-Fe fraction together with results for Nd$_2$Fe$_{14}$B/α-Fe ones. The stacking period was set at 8 nm.

FIG. 4. $(BH)_{max}$ of anisotropic SmCo$_5$/\α-Fe nanocomposite magnets at 473 K as a function of \α-Fe together with results for Nd$_2$Fe$_{14}$B/α-Fe ones. The stacking period was set at 8 nm.

FIG. 5. Coercivity H_c of isotropic SmCo$_5$/\α-Fe nanocomposite magnets at 300 K and 473 K as a function of the stacking period, t_s. The averaged H_c values for five models and error bars were shown in the figure. The thickness ratio of \α-Fe to SmCo$_5$ layers was set at 1.
The presence of the peak of H_c can be explained by averaging effect of the magnetic anisotropy, because the reduction in the grain size increases the effective inter-grain exchange interaction and decreases the effective magnetic anisotropy. As the exchange constant in hard grains is anisotropy. As the exchange constant in hard grains is reduced, the anisotropy field, and the exchange constant of SmCo$_5$. Furthermore, the H_c of anisotropic magnets monotonically increased with reducing t_s, whereas the H_c vs t_s curves of isotropic magnets had a peak, thus the behavior of H_c of isotropic magnets was almost determined by the ratio of exchange energy to magnetic anisotropy one.

(3) The temperature coefficient of H_c for anisotropic and isotropic were approximately -0.20%/K and -0.28%/K, respectively, which are much smaller than those for Nd-Fe-B-based magnets, approximately -0.50%/K.

(4) The $(BH)_{max}$ of isotropic magnets vs t_s curves had a peak. The peak $(BH)_{max}$ values were approximately 300 and 250 kJ/m3 at 300 and 473 K, respectively.

The above results suggest that anisotropic SmCo$_5$/x-Fe nanocomposite magnets with a layered structure can be used at a high temperature because of their low temperature coefficient of H_c and a large $(BH)_{max}$ value at a high temperature.

IV. CONCLUSIONS

Magnetic properties of anisotropic and isotropic SmCo$_5$/x-Fe nanocomposite magnets with a layered structure were analyzed by computer simulations based on the micromagnetic theory. The obtained results are summarized as follows:

1. The $(BH)_{max}$ values of approximately 800 and 700 kJ/m3 can be achieved for the magnets at 300 and 473 K, respectively. The value at 473 K is much higher than that for Nd$_2$Fe$_{14}$B/x-Fe nanocomposite magnets.

2. H_c of anisotropic magnets monotonically increased with reducing t_s, whereas the H_c vs t_s curves of isotropic magnets had a high peak value between 20 and 30 nm. The behavior of H_c of isotropic magnets was almost determined by the ratio of exchange energy to magnetic anisotropy one.

3. The temperature coefficient of H_c for anisotropic and isotropic were approximately -0.20%/K and -0.28%/K, respectively, which are much smaller than those for Nd-Fe-B-based magnets, approximately -0.50%/K.

4. The $(BH)_{max}$ of isotropic magnets vs t_s curves had a peak. The peak $(BH)_{max}$ values were approximately 300 and 250 kJ/m3 at 300 and 473 K, respectively.