<table>
<thead>
<tr>
<th>Title</th>
<th>Magnetic properties of pulsed laser deposition-fabricated isotropic Pr-Fe-B thick-films magnets for magnetic micro-machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakano, Masaki; Oshima, Shuichi; Yanai, Takeshi; Fukunaga, Hirotoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Applied Physics, 115(17), 17A741; 2014</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-05-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/34738</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.</td>
</tr>
</tbody>
</table>
Magnetic properties of pulsed laser deposition-fabricated isotropic Pr-Fe-B thick-films magnets for magnetic micro-machines

M. Nakano, S. Oshima, a) T. Yanai, and H. Fukunaga
Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan

(Submitted 7 November 2013; received 23 September 2013; accepted 26 November 2013; published online 4 March 2014)

A preparation of Pr-Fe-B thick-film magnets by using a PLD (Pulsed Laser Deposition) method with the energy density at approximately 50 mJ/m² using the laser power of 2 W was effective to obtain the required magnetic properties for the application to a multi-polarly magnetized rotor. The isotropic films mainly consisted of Pr₂Fe₁₄B magnetic phase whose saturation magnetization is approximately 1.56 T, however the remanence (Bₚ) showed higher than 0.9 T. The obtained value of Bₚ was considered to be attributed to a remanence enhancement due to the interaction of Pr₂Fe₁₄B hard magnetic phases. Resultantly, the coercivity and (BH)ₘₐₓ of the samples exceeded 600 kA/m and 115 kJ/m³, respectively, which were larger than that of previously reported PLD-fabricated isotropic rare-earth based thick-films. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867130]

I. INTRODUCTION

In order to advance a microelectro–mechanical systems (MEMS), small rare-earth magnets have been prepared.1–3 A lot of researchers worked on pulsed laser deposition (PLD) rare-earth films such as Nd-Fe-B, Sm-Co, and Sm-Fe-N ones.4–10 Recently, we found that the fabrication of a multi-polarly magnetized rotor using isotropic Nd-Fe-B thick-film magnets is effective to develop a miniaturized cylindrical motor.11 The required values of coercivity, remanence, and (BH)ₘₐₓ for the thick-films applied to the rotor are 0.9 T, 400 kA/m, and 90 kJ/m³, respectively, and we demonstrated that isotropic Nd-Fe-B/α-Fe nano-composite thick-films had sufficient values of remanence and (BH)ₘₐₓ by using the PLD method with the laser energy density at 100 mJ/m².12 Furthermore, the usage of a small spot size of a laser beam, which means that a laser beam was focused on the surface of a target according to the focus distance, in the experiment showed a grain refinement without the adoption of additives in the microstructure of PLD-fabricated thick films. On the other hand, the coercivity value of the nano-composite samples was less than 400 kA/m, namely it was difficult to achieve the reproducibility of required coercivity value. It is generally known that the magnetic crystalline anisotropy constant of a Pr₂Fe₁₄B phase (Kᵥ = 6.8 MJ/m³) is larger by approximately 2.3 MJ/m³ than that of a Nd₂Fe₁₄B phase (Kᵥ = 4.5 MJ/m³).13

This contribution reports the ablation of Pr-Fe-B targets with various compositions by using the small spot size and the evaluation on the properties of the obtained samples. Resultantly, the laser energy density at approximately 50 mJ/mm² using the laser power of 2 W enabled us to obtain the required properties. It was also considered that the origin of superior magnetic properties is attributed to a remanence enhancement due to the magnetic interaction between Pr₂Fe₁₄B grains.

II. EXPERIMENTAL PROCEDURE

The Pr-Fe-B targets with various compositions were ablated by an Nd-YAG pulse laser (wave length = 355 nm, frequency of the wave = 30 Hz). Each film was deposited on a Ta substrate in the vacuum atmosphere of approximately 10⁻⁵ Pa. The laser beam was focused on the surface of each rotating target, and the laser energy density varied by controlling the laser power range from 1 to 4 W, which was measured with a power meter in front of the entrance lens of the chamber. A deposition rate higher than 10 μm/h could be obtained for a distance of 10 mm between a target and a substrate. All the as-deposited films thicker than 10 μm were crystallized by a pulse annealing (PA) method in the vacuum atmosphere of 2–5 × 10⁻⁵ Pa. The pulse-annealing time was approximately 1.7 s with an infrared furnace at output power of 8 kW, and then they were cooled down to room temperature.14

The magnetic properties of the samples were measured with a vibrating sample magnetometer (VSM) under the maximum applied magnetic field of 2.5 T after a magnetization with a pulsed magnetic field of 7 T. All the films had isotropic magnetic properties, therefore in-plane ones were shown in the paper. The film thickness was measured with a micrometer, and the composition of each film was analyzed with an energy dispersive X-ray spectrometry (EDX). Furthermore, the crystalline structure of each film was observed by using a X-ray diffraction.

III. RESULTS AND DISCUSSION

A. Magnetic properties and crystalline structure of Pr-Fe-B/α-Fe together with Nd-Fe-B/α-Fe nano-composite thick-film magnets prepared by using the laser power of 4 W

Figure 1 shows the values of remanence and coercivity of Pr-Fe-B/α-Fe together with Nd-Fe-B/α-Fe thick-film magnets prepared by using the laser energy density at approximately 100 mJ/mm² using the laser power of 4 W. Each target composition was Pr₂Fe₁₄B and Nd₂Fe₁₄B, respectively, and the
magnetic properties of post-annealed films were indicated. The conditions of deposition and post-annealing processes were same in the both samples, and the results of Nd-Fe-B films shown in the figure have already been reported in Ref. 12. In addition, the rare-earth (Pr or Nd) composition range from 9 to 11 at. % was almost the same in the both of nano-composite films, however, the magnetic properties were much different. Although the values of coercivity and remanence were higher than 300 kA/m and 0.9 T in the Nd-Fe-B/α-Fe thick-film magnets, the coercivity and remanence values of Pr-Fe-B/α-Fe films were lower and more fluctuating, respectively. In order to investigate the different properties for the both films, the observation of crystalline structure together with the measurement on M-H loops of the as-deposited films were carried out. As previously reported in Ref. 12, an α-Fe crystalline phase was mainly observed in an as-deposited Nd-Fe-B/α-Fe film. On the other hand, an as-deposited Pr-Fe-B/α-Fe film had the diffraction peaks of a Pr$_2$Fe$_{14}$B crystalline phase together with an α-Fe phase. In addition, the M-H loop of as-deposited Pr-Fe-B/α-Fe film widened compared with that of Nd-Fe-B/α-Fe one. It is generally known that the amorphous structure of the hard magnetic phase before an annealing process is indispensable to achieve good magnetic properties in nano-composite magnets. It, therefore, was considered that we had difficulty in obtaining large coercivity values of Pr-Fe-B/α-Fe films as shown in Fig. 1. Furthermore, the substrate temperatures of the both films during the deposition with the laser power of 4 W were confirmed to be approximately 673 K which suggests the requirement of reduction in the substrate temperature to suppress the crystallization of Pr$_2$Fe$_{14}$B phase.

B. Magnetic properties of thick-film magnets prepared by ablating a Pr-Fe-B target with a small spot size of a laser beam under the laser power range between 1 and 3 W

We have already reported that the rise of substrate temperature is attributed to the heat radiation from a target during the fabrication of Fe-Pt films by using the PLD. Therefore the reduction in the laser power from 3 to 1 W was carried out in order to suppress the crystallization of Pr$_2$Fe$_{14}$B phase. Resultantly, it was clarified that the use of 2 W (Laser energy density: Higher than 50 mJ/mm2) is an optimum condition to prepare a thick film with good magnetic properties under the high deposition rate. Namely, in the case of 3 W, the magnetic properties did not change compared with those of films prepared at 4 W, and we had difficulty in obtaining relatively high deposition rate larger than 10 μm/h at the power of 1 W.

Figure 2 shows the X-ray diffraction patterns of as-deposited and annealed Pr-Fe-B films prepared by using a Pr$_2$Fe$_{14}$B target together with the laser power of 2 W. Here, an XRD pattern of an as-deposited film prepared at 4 W was also shown in the figure. The film compositions for the 2 W case were almost the same as the stoichiometric one. The diffraction peaks corresponding to Pr$_2$Fe$_{14}$B phases in the samples prepared at 2 W were not strong compared with those for the 4 W case. Furthermore, the average grain size of Pr$_2$Fe$_{14}$B phase was approximately 18 nm according to the estimation of Scherrer’s equation. The magnetic properties of the annealed films were shown in Fig. 3. Although the

FIG. 1. Remanence and coercivity values of Pr-Fe-B/α-Fe and Nd-Fe-B/α-Fe nano-composite thick-films prepared by using the laser energy density at approximately 100 mJ/m2 using the laser power of 4 W. Each target composition was Pr$_2$Fe$_{14}$B and Nd$_2$Fe$_{14}$B, respectively, and the magnetic properties of post-annealed films were indicated. The same deposition and post-annealing processes were carried out in all the samples.

FIG. 2. X-ray diffraction patterns of as-deposited and annealed Pr-Fe-B films prepared by using a Pr$_2$Fe$_{14}$B target together with the laser power of 2 W. XRD pattern of an as-deposited film prepared at 4 W was also shown.

FIG. 3. Coercivity and remanence values of annealed Pr-Fe-B and Nd-Fe-B/α-Fe thick-films. The Pr-Fe-B films were prepared by using the laser energy density at approximately 50 mJ/m2 using the laser power of 2 W. The plots of Nd-Fe-B ones were also shown in Fig. 1. The remanence values of Pr-Fe-B thick-films fluctuated between 0.85 and 1.05 T, however the values of coercivity were higher compared with those of Nd-Fe-B/α-Fe thick-films.
values of remanence fluctuated from 0.85 to 1.05 T, almost all the coercivity values of the thick-films exceeded 400 kA/m. We also confirmed \((BH)_{\text{max}}\) values became higher than 90 kJ/m\(^3\). Figure 4 shows a M-H loop of a sample which had the largest \((BH)_{\text{max}}\) value through the experiments. In order to evaluate the exchange interaction, a recoil rate of the above-mentioned Pr-Fe-B thick-film magnet was measured. Here, the rates of previously reported PLD-fabricated Nd-Fe-B/\(\alpha\)-Fe\(^1\) and Fe-Pt films\(^2\) were also plotted in Fig. 5. It was found that the recoil behavior of the Pr-Fe-B thick film is superior to those of other PLD-made films together with that of a nano-composite bulk magnet with Nd\(_{2}\)Fe\(_{14}\)B and \(\alpha\)-Fe phases.\(^{15}\)

From the above results, it is considered that the grain refinement of approximately 20 nm together with the good recoil rate in a Pr-Fe-B film with similar stoichiometric composition enables us to obtain the exchange interaction between the hard magnetic phase of Pr\(_2\)Fe\(_{14}\)B. Resultantly, we succeeded in achieving the large coercivity and the high \((BH)_{\text{max}}\) value.

IV. CONCLUSION

Use of a Pr-Fe-B target together with an optimum laser condition enabled us to obtain isotropic thick-film magnets with superior magnetic properties compared with those of previously reported rare-earth based thick-films by using the PLD method with the deposition rate higher than 10 \(\mu\)m/h. In particular, the reduction in the laser power from 4 to 2 W leaded to suppress the heating of a substrate temperature and to obtain amorphous structure of an as-deposited Pr-Fe-B film. Resultantly, the coercivity and \((BH)_{\text{max}}\) of the samples exceeded 600 kA/m and 115 kJ/m\(^3\), respectively, after a post-annealing. The origin of the good properties of a post-annealed film is considered to be attributed to the exchange interaction between Pr\(_2\)Fe\(_{14}\)B hard grains.

\(^{1}\)O. Cugat, in *Proceeding of the 16th International Workshop on Rare Earth Magnets and Their Applications* (Ronton Press, 2002), p. 478.

\(^{12}\)M. Nakano, K. Motomura, T. Yanai, and H. Fukunaga, Dig. ISAMMA 2013 **2014**, TB-01.

