Case Report

Life-threatening toxicity in a patient with UGT1A1*6 heterozygous polymorphism after irinotecan-based chemotherapy: a case report

Daiki Ogawara¹, Minoru Fukuda¹,², Yoichi Nakamura¹, Katsumi Nakatomi¹, Kohei Motoshima¹, Hiroaki Senju¹, Kousuke Mizoguchi¹, Shinnosuke Takemoto¹, Takuya Honda², Kazuto Ashizawa², Yoshinori Hasegawa¹, Shigeru Kohno¹

¹ Second Department of Medicine, Nagasaki University Hospital, Nagasaki, Japan
² Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
³ Department of Respiratory Medicine, Nagoya University Hospital, Nagasaki, Nagoya, Japan

Polymorphism of the UGT1A1 gene is known to play an important role in irinotecan pharmacokinetics and severe toxicity. A 71-year-old man with lung cancer (squamous cell carcinoma cT2aN3M0 stage IIIB) received irinotecan and cisplatin with concurrent thoracic radiotherapy. Although all treatments were discontinued after day 7, severe leukopenia, neutropenia, febrile neutropenia, thrombocytopenia, and diarrhea developed. His life was at risk, and his ECOG performance status (PS) fell to 4. He had UGT1A1*6 heterozygous and UGT1A1*28 wild-type gene polymorphisms. Considering its frequency in Asians, we should take care when using irinotecan to treat patients with UGT1A1*6 heterozygous polymorphism.

Key words: UGT1A1*6 polymorphism, irinotecan, lung cancer

ACTA MEDICA NAGASAKIENSIA 59: 63 – 65, 2014

Introduction

Irinotecan (CPT-11), a camptothecin analog with potent anticancer activity by the inhibition of topoisomerase I, is applied for a broad spectrum of solid tumors, including colorectal, lung, and gastric cancer [1]. However, it causes side-effects such as severe diarrhea and neutropenia in 20-35% of patients [2]. Irinotecan is metabolized by carboxylesterase to form an active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), which is subsequently conjugated by UDP-glucuronosyltransferase 1A1 (UGT1A1) [3].

Polymorphism of the UGT1A1 gene is known to play an important role in irinotecan pharmacokinetics and severe toxicity [4]. Here we describe severe toxicity in a patient with UGT1A1*6 genotypes after chemoradiotherapy including irinotecan.

Clinical summary

The patient was a 71-year-old man with a heavy smoking history, in whom an abnormal shadow was noted on chest images. He was admitted to our hospital for further examination and management of the shadow. Chest radiography and a computed tomography (CT) scan demonstrated a nodule on the right S3 and enlarged mediastinal lymph node. The patient was diagnosed with lung cancer (squamous cell carcinoma cT2aN3M0 stage IIIB) with an ECOG performance status (PS) of 1 based on transbronchial lung biopsy and systemic workups. He received chemotherapy consisting of irinotecan (50mg/m² on days 1, 8 and 15) and cisplatin (60mg/m² on day 1) with concurrent thoracic radiotherapy, which confirmed feasibility [5]. A chart of his body temperature and white blood cells is shown in Figure 1. Because he had
a high fever and severe toxicity after day 7, all treatments were discontinued. During the first cycle, grade 4 leukopenia, grade 4 neutropenia, grade 3 febrile neutropenia, grade 4 thrombocytopenia, and grade 2 diarrhea developed according to the Common Terminology Criteria for Adverse Events Version 3.0 (CTCAE v3.0). Myelotoxicity peaked on day 12 with white blood cells 200/µl, neutrophils 12/µl, and platelets 9,000/µl, respectively. These life-threatening toxicities persisted and PS fell to 4. The patient was treated with granulocyte-colony stimulating factor and cefepime antibiotic, and was given a platelet transfusion. His status resolved on day 19 after intensive care. He then intended to move to another hospital for supportive care. We obtained his consent to perform genetic testing, and he was found to have UGT1A1*6 heterozygous and UGT1A1*28 wild-type gene polymorphisms.

Discussion

SN-38, an active metabolite of irinotecan, is detoxified by glucuronidation with UGT1A isoforms, 1A1, 1A7, 1A9, and 1A10. Clinical pharmacogenomic studies of irinotecan were conducted in cancer patients. Lyer revealed that patients with the UGT1A1*28 polymorphism had a significantly lower SN-38 glucuronidation rate than those with the normal allele and suffered more severe diarrhea and neutropenia [6]. Innocenti revealed that homozygosity for UGT1A1*28 and total bilirubin levels are strongly associated with severe neutropenia and could be used to identify cancer patients predisposed to the severe toxicity of irinotecan [7]. Therefore, UGT1A1*28 polymorphisms were taken into consideration by the US Food and Drug Administration (FDA) as predictors of irinotecan toxicity in 2005. However, the distribution of polymorphisms shows large interethnic differences. The frequency of UGT1A1*28 is high in Caucasians, whereas it is low in Asians [8].

In Asian studies, UGT1A1*6 allele is associated with low glucuronidation activity and severe toxicity. Minami analyzed Japanese cancer patients treated with irinotecan for association between genetic polymorphisms and toxicities and demonstrated that homozygotes and double heterozygotes of *6 and *28 were significantly associated with severe neutropenia [9]. Incidences of grade 3 or 4 neutropenia for patients with wild, heterozygous, and homozygous of UGT1A1*6 or *28 were 14.3% (3/21), 24.1% (7/29), and 80.0%(4/5) in irinotecan monotherapy and 57.1%(20/35), 70.0%(14/20), and 100%(7/7) in irinotecan with cisplatin therapy, respectively. Han demonstrated homozygosity for UGT1A1*6 was associated with a high risk of severe neutropenia during irinotecan treatment [10]. Incidences of grade 4 neutropenia for patients with wild or heterozygous, and homozygous of UGT1A1*6 were 24%(18/75), and 67%(4/6), respectively. Onoue also demonstrated homozygosity for UGT1A1*6 was
associated with a high risk of severe neutropenia [11]. Incidences of grade 3 or 4 neutropenia for patients with wild, heterozygous, and homozygous of UGT1A1*6 were 11%(9/70), 35%(17/48), and 50%(3/3), respectively. Although UGT1A1*6 homozygosity is associated with severe toxicity, its frequency is low. In three papers [12-14], 212 Japanese patients were analyzed for UGT1A1*28 and *6. The frequency of *6/*6, *28/*28 and *6/*28 was only 2.8%, 3.3% and 1.9%, respectively, whereas *6/- was 26.4%. In the present case, a patient heterozygous for UGT1A1*6 experienced life-threatening toxicity involving neutropenia, thrombocytopenia, febrile neutropenia and diarrhea after irinotecan plus cisplatin chemotherapy. In our prospective phase II study and recent meta-analysis of Asian patients, UGT1A1*6 polymorphism including homozygotes and heterozygotes was associated with severe neutropenia [15, 16]. Considering the frequency and the present severe case, we should use irinotecan carefully for patients with UGT1A1*6 heterozygous polymorphism. There might be an additional unknown factor. Regarding efficacy, Han reported an association with UGT1A1 polymorphism that patients with UGT1A1*6/*6 had a lower tumor response, and shorter progression-free and overall survival [10]. In the present case, the patient refused to continue chemotherapy or radiotherapy after recovery and transferred to supportive care. Markedly severe toxicity led to decreased therapeutic efficacy.

References