Regional Differences in the Growing Incidence of Dengue Fever in Vietnam Explained by Weather Variability

Ha Hai Vu1,2, Junko Okumura2*, Masahiro Hashizume2, Duong Nhu Tran1 and Taro Yamamoto2,3

Received 27 September, 2013 Accepted 8 October, 2013 Published online 18 December, 2013

Abstract: Dengue fever is a major health problem in Vietnam, but its incidence differs from province to province. To understand this at the local level, we assessed the effect of four weather components (humidity, rainfall, temperature and sunshine) on the number of dengue cases in nine provinces of Vietnam. Monthly data from 1999 to 2009 were analysed by time-series regression using negative binomial models. A test for heterogeneity was applied to assess the weather-dengue association in the provinces. Those associations were significantly heterogeneous (for temperature, humidity, and sunshine: \(P < 0.001 \) heterogeneity test; for rainfall: \(P = 0.018 \) heterogeneity test). This confirms that weather components strongly affect dengue transmission at a lag time of 0 to 3 months, with considerable variation in their influence among different areas in Vietnam. This finding may promote the strategic prevention of dengue disease by suggesting specific plans at the local level, rather than a nationally unified approach.

Key words: Dengue, temperature, rainfall, humidity, sunshine, weather variability

INTRODUCTION

Dengue is a mosquito-borne viral disease of increasing public-health concern worldwide. In recent decades, the incidence has increased 30-fold and has expanded to new geographic regions, spreading between countries and from urban to rural areas [1]. Dengue diseases are now widely dispersed in the tropics and subtropics and expose more than 2.5 billion people in over 100 countries to the risk of dengue [2]. The dengue virus belongs to the genus Flavivirus, family Flaviviridae and includes four serotypes, DEN-1 through DEN-4. There is no cross-protective immunity between the four serotypes, although immunity to one serotype can give life-long protection against the serotype [3].

Dengue is transmitted via the bite of infective mosquitoes, primarily Aedes aegypti and secondarily Ae. albopictus [4, 5]. Previous studies have demonstrated a strong correlation between dengue cases and modelled Ae. Aegypti and Ae. Albopticus populations [6, 7]. Vietnam has a typical Southeast Asian tropical monsoon climate, and the territory of Vietnam stretches over areas approximately three-quarters hilly and mountainous. The topography and monsoon climate lead to differences in the temperature-humidity regime among regions in Vietnam. For instance, there is a cold winter with little rain in the northern region, wet and dry seasons in the southern and highland region, and rainy winter season in the central region [8]. The diversity of climatic conditions could affect the differences in vector population size and distribution in Vietnam [5] and thereby play an important role in dengue epidemics [1]. In 1959, the early dengue epidemics in Vietnam were reported in Ha Noi and Hai Phong. Since then, the disease has become endemic throughout Vietnam in spite of the existing diversity in climate in the country [9].

Several studies have assessed the impact of weather and climate on dengue in Vietnam and in other parts of the world, but the majority focused on a single region [10–12] or municipalities in a single region [13, 14], or took a global approach in multiple countries [6, 15]. Few studies have considered the spatial heterogeneity of weather components and its impact on vector populations to predict dengue incidence, particularly in Vietnam.

The aim of this study was to identify the meteorological factors responsible for the spatial and temporal heterogeneity in the incidence of dengue fever in Vietnam while considering the regimes of each weather variable, i.e., rain-

1 National Institute of Hygiene and Epidemiology, 1-Yexcanh, Hai Ba Trung, Ha Noi 112800, Vietnam
2 Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
3 Department of International Health, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
*Corresponding author:
Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
E-mail: jokumura@nagasaki-u.ac.jp
fall, temperature, humidity, and hours of sunshine. For instance, temperature may not always be positively associated with the incidence of dengue fever, and it is useful to assess the heterogeneous temperature regime in Vietnam in order to establish an effective method of projection in the future. We used meteorological and dengue incidence data collected from nine provinces over a period of 11 years. The parameters included in the analysis were humidity, temperature, rainfall, and hours of sunshine. To interpret the results, we referred to data on the dispersal of the different carriers in these provinces. This information may assist the National Program for Dengue Surveillance and Control in planning strategies to control the spread of dengue fever.

MATERIALS AND METHODS

Study location

The National Program for Dengue Surveillance and Control was established in 1999 and expanded to include all the provinces of Vietnam by 2005. This system of surveillance, management and administration has been synchronized and strengthened into a unified effort to control Dengue Fever and Dengue Hemorrhagic Fever (DF/DHF) as part of a national strategy [16]. Based on available meteorological and dengue incidence data from 1999 to 2009, nine provinces were selected for the study: Ha Noi, Da Nang, Binh Dinh, Khanh Hoa, Gia Lai, Lam Dong, Ho Chi Minh, Ba Ria Vung Tau and Ca Mau (Fig. 1). In 2008, the Ha Tay and old Ha Noi provinces merged into one province. Hence, the Ha Noi province data include data from Ha Tay and old Ha Noi before 2008 and data from Ha Noi since 2008. The nine provinces belong to one surveillance system for DF/DHF.

Data sources

Monthly data on dengue cases for each province from 1999 to 2009 were collected from the National Institute of Hygiene and Epidemiology and the Department of Preventive Medicine. Data were based on the established surveillance system and published in the Statistical Yearbook of Infectious Diseases. The cases included DF and DHF, which had been clinically diagnosed based on the WHO criteria of 1997 [17]. Based on exploratory analyses, data from the literature, Akaike’s Information Criterion (AIC) [23] and considerations concerning the interpretation difficulty associated with long time lags, we analyzed lag times (delay in the effect of each weather component on the number of dengue cases) of up to 3 months. In our initial analyses, we fitted a natural cubic spline 3 df to the average over lag periods of 0–3 months [24], which means the average of 4-month weather components, namely the average of those in the month when the dengue case reported and 3 months prior to the month. When each weather component was analyzed, we also included other weather components as natural cubic splines (3 df) in the model to allow for the effects of confounding variables, with a lag time of 0–3 months. In real life, weather is a synergy of weather variables. Hence, we decided to analyze the impacts by multivariate analysis.

In summary, the model took the following form:

\[
\log[E(Y)] = \alpha + \text{NS(rain}_{0,3}, 3 \text{ df}) + \text{NS(temp}_{0,3}, 3 \text{ df}) \\
+ \text{NS(hum}_{0,3}, 3 \text{ df}) + \text{NS(sun}_{0,3}, 3 \text{ df}) \\
+ \text{NS(time, 3 df/year}) + i\text{.year,}
\]

where E(Y) is the expected monthly case count and ‘rain’, ‘temp’, ‘hum’, ‘sun’ and ‘time’ indicate the average monthly rainfall, temperature, relative humidity, sunshine hours and month of the year, respectively. NS indicates a natural cubic spline function and i.year represents indicator variables of year.

Statistical analysis

The monthly cases of dengue were treated as a dependent variable, and the meteorological variables as independent variables. The associations between them were estimated using negative binomial generalized linear models [19]. Some missing data in the rainfall records, altogether less than 8%, were extrapolated and complemented using the generalized linear model. To account for seasonality in the number of dengue cases, natural cubic splines for months of the year with 3 degrees of freedom (df) were included in the model. Indicator variables for the years of the study were also incorporated into the model to allow for long-term trends and other variation between the years. To control for autocorrelation, an autoregressive term of order 1 was incorporated into the models [20].

Models for rainfall, temperature, humidity and sunshine

Rainfall, temperature, humidity and sunshine were analyzed because we hypothesized that these weather components potentially influence the incidence of dengue cases based on previous studies looking at climate and infectious diseases [21, 22]. Based on exploratory analyses, data from the literature, Akaike’s Information Criterion (AIC) [23] and considerations concerning the interpretation difficulty associated with long time lags, we analyzed lag times (delay in the effect of each weather component on the number of dengue cases) of up to 3 months. In our initial analyses, we fitted a natural cubic spline 3 df to the average over lag periods of 0–3 months [24], which means the average of 4-month weather components, namely the average of those in the month when the dengue case reported and 3 months prior to the month. When each weather component was analyzed, we also included other weather components as natural cubic splines (3 df) in the model to allow for the effects of confounding variables, with a lag time of 0–3 months. In real life, weather is a synergy of weather variables. Hence, we decided to analyze the impacts by multivariate analysis.

In summary, the model took the following form:

\[
\log[E(Y)] = \alpha + \text{NS(rain}_{0,3}, 3 \text{ df}) + \text{NS(temp}_{0,3}, 3 \text{ df}) \\
+ \text{NS(hum}_{0,3}, 3 \text{ df}) + \text{NS(sun}_{0,3}, 3 \text{ df}) \\
+ \text{NS(time, 3 df/year}) + i\text{.year,}
\]

where E(Y) is the expected monthly case count and ‘rain’, ‘temp’, ‘hum’, ‘sun’ and ‘time’ indicate the average monthly rainfall, temperature, relative humidity, sunshine hours and month of the year, respectively. NS indicates a natural cubic spline function and i.year represents indicator variables of year.
Graphs of the predicted number of dengue cases plotted as smoothed functions of each weather component were created by natural cubic splines [24]. These graphs were used to visually assess whether the functional form of the relationship was linear across the full range of independent variables. Because there was no obvious U- or V-shaped risk-response relationship in the smoothed graphs, we chose a linear model for simplicity.

Change in the number of dengue cases associated with 1 mm, 1°C, 1% and 1 hour changes in rainfall, temperature, humidity and sunshine, respectively, (estimated as coefficients from the regression model) was reported as a percentage change with corresponding 95% confidence intervals (CIs). Coefficient and 95% CIs of the regression between weather components and dengue cases for each province were analyzed to assess variability using the chi-square test for heterogeneity. Sensitivity of the estimates to the seasonal control was examined by replacing the natural cubic splines terms with an indicator variable of season (3-month seasonal terms: spring, summer, autumn and winter), month, Fourier terms of three to five harmonics per year and natural cubic splines for months of the year with 4 df. The

Fig. 1. The nine provinces of Vietnam selected for the study. The study sites are shaded in gray on the map.
smallest value of AIC was set as the standard to identify the best model [23]. All statistical analyses were performed using Stata 11.1 (Stata Corporation, College Station, TX, USA).

RESULTS

Weather and dengue incidence in each region

From 1999 to 2009, a total of 187,171 dengue cases were reported in the nine provinces. The number of cases was highest in Ho Chi Minh City (84,089) and lowest in Lam Dong province (1,673). There was considerable variability in rainfall, temperature, humidity and sunshine hours among the regions. In the northern region, Ha Noi (Fig. 2a), it was relatively cool with short durations of sunshine. In the central region, Da Nang, Binh Dinh and Khanh Hoa (Fig. 2b), it was hot with the highest rainfall. In the highlands region, Gia Lai (Fig. 2c) and Lam Dong, it was cool with the highest humidity. In the southern region, Ho Chi Minh (Fig. 2d), Ba Ria Vung Tau and Ca Mau, it was the hottest with long durations of sunshine. The number of monthly dengue cases increased during the study period in Ha Noi, Ho Chi Minh, and Ba Ria Vung Tau. The yearly peaks in all provinces were seen mainly in June to December.

Model selection

To select the best model, we performed the sensitivity analysis by comparing the seven models as indicated in Table 1. Since the AIC of model 7 (adjusted for natural cubic spline with 3df) was the smallest, we selected it as the best model. Fig. 3 presents both observed and predicted monthly dengue incidences during the period of 11 years in all the nine provinces. The predicted dengue cases were calculated using model 7. Although the R^2 of model 7 ranged between 6% and 20% (Table 1), Fig. 3 demonstrates almost the same trend in the dengue incidence observed over the 11-year period.

Association between weather components and dengue incidence based on the model 7

Based on the parameters, Fig. 4 demonstrates the association between the four weather components and dengue incidence. With a lag of 0–3 months, there were significant associations between average rainfall and dengue cases in Ha Noi and Ba Ria Vung Tau (Fig. 4a). The increase in the number of dengue cases per 1 mm increase in rainfall with a lag of 0–3 months adjusted for natural cubic spline with 3df was 0.7% (95% CI: 0.2% to 1.2%, $P = 0.009$) and −0.5% (95% CI: −0.9% to −0.1%, $P = 0.014$), respectively.

The dengue cases showed a significant positive associ-
ation with temperature in four provinces and a significant negative association in one province (Fig. 4b). The percentage changes in the number of dengue cases per 1°C increase in average temperature over a lag of 0–3 months were 135.1% (95% CI: 79.3% to 208.3%, P < 0.001) in Ha Noi, 62.7% (95% CI: 3.8% to 155.2%, P = 0.034) in Da Nang, 82.8% (95% CI: 20.2% to 178.0%, P = 0.005) in Lam Dong, 43.0% (95% CI: 8.0% to 89.4%, P = 0.012) in Ca Mau and –28.7% (95% CI: −43.2% to −10.4%, P = 0.004) in Ho Chi Minh.

Table 1. The AIC values and pseudo R-square (indicated in parentheses) in the model

<table>
<thead>
<tr>
<th>Model</th>
<th>Ha Noi</th>
<th>Da Nang</th>
<th>Binh Dinh</th>
<th>Khanh Hoa</th>
<th>Gia Lai</th>
<th>Lam Dong</th>
<th>Ho Chi Minh</th>
<th>Ba Ria Vung Tau</th>
<th>Ca Mau</th>
</tr>
</thead>
<tbody>
<tr>
<td>model 1</td>
<td>1249</td>
<td>953</td>
<td>1215</td>
<td>1448</td>
<td>1111</td>
<td>834</td>
<td>1710</td>
<td>1330</td>
<td>1379</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(0.195)</td>
<td>(0.057)</td>
<td>(0.113)</td>
<td>(0.089)</td>
<td>(0.151)</td>
<td>(0.145)</td>
<td>(0.122)</td>
<td>(0.173)</td>
</tr>
<tr>
<td>model 2</td>
<td>1241</td>
<td>954</td>
<td>1222</td>
<td>1428</td>
<td>1117</td>
<td>838</td>
<td>1713</td>
<td>1336</td>
<td>1346</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.209)</td>
<td>(0.064)</td>
<td>(0.136)</td>
<td>(0.098)</td>
<td>(0.164)</td>
<td>(0.151)</td>
<td>(0.129)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>model 3</td>
<td>1239</td>
<td>952</td>
<td>1221</td>
<td>1426</td>
<td>1116</td>
<td>837</td>
<td>1712</td>
<td>1337</td>
<td>1344</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.208)</td>
<td>(0.063)</td>
<td>(0.136)</td>
<td>(0.097)</td>
<td>(0.163)</td>
<td>(0.151)</td>
<td>(0.127)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>model 4</td>
<td>1238</td>
<td>950</td>
<td>1217</td>
<td>1429</td>
<td>1113</td>
<td>834</td>
<td>1710</td>
<td>1335</td>
<td>1345</td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.207)</td>
<td>(0.063)</td>
<td>(0.132)</td>
<td>(0.096)</td>
<td>(0.162)</td>
<td>(0.150)</td>
<td>(0.125)</td>
<td>(0.200)</td>
</tr>
<tr>
<td>model 5</td>
<td>1237</td>
<td>952</td>
<td>1217</td>
<td>1428</td>
<td>1112</td>
<td>833</td>
<td>1709</td>
<td>1332</td>
<td>1345</td>
</tr>
<tr>
<td></td>
<td>(0.186)</td>
<td>(0.201)</td>
<td>(0.060)</td>
<td>(0.130)</td>
<td>(0.094)</td>
<td>(0.159)</td>
<td>(0.148)</td>
<td>(0.125)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>model 6</td>
<td>1250</td>
<td>943</td>
<td>1213</td>
<td>1429</td>
<td>1112</td>
<td>829</td>
<td>1708</td>
<td>1330</td>
<td>1357</td>
</tr>
<tr>
<td></td>
<td>(0.176)</td>
<td>(0.206)</td>
<td>(0.060)</td>
<td>(0.126)</td>
<td>(0.090)</td>
<td>(0.158)</td>
<td>(0.147)</td>
<td>(0.123)</td>
<td>(0.188)</td>
</tr>
<tr>
<td>model 7</td>
<td>1245</td>
<td>946</td>
<td>1212</td>
<td>1441</td>
<td>1113</td>
<td>830</td>
<td>1707</td>
<td>1329</td>
<td>1366</td>
</tr>
<tr>
<td></td>
<td>(0.177)</td>
<td>(0.201)</td>
<td>(0.059)</td>
<td>(0.118)</td>
<td>(0.088)</td>
<td>(0.156)</td>
<td>(0.147)</td>
<td>(0.123)</td>
<td>(0.181)</td>
</tr>
</tbody>
</table>

AIC: Akaike’s information criterion. Model 1: adjusted for season, Model 2: adjusted for month, Model 3: adjusted for Fourier term of five harmonics per year, Model 4: adjusted for Fourier term of four harmonics per year, Model 5: adjusted for Fourier term of three harmonics per year, Model 6: adjusted for natural cubic spline with 4df, Model 7: adjusted for natural cubic spline with 3df.
The relationship between the number of dengue cases and average humidity in the nine provinces with a lag of 0–3 months is shown in Fig. 4c. A significant positive association was observed in Khanh Hoa, Ho Chi Minh and Ca Mau: with a 1% increase in humidity, the number of dengue cases increased 17.0% (95% CI: 6.8% to 28.1%, \(P = 0.001 \)), 15.7% (95% CI: 6.0% to 26.3%, \(P = 0.001 \)) and 14.7% (95% CI: 9.5% to 20.2%, \(P < 0.001 \)), respectively. However, a significant negative association was found in Ha Noi; with a 1% increase in humidity, the number of dengue cases decreased –24.1% (95% CI: –35.5% to –10.8%, \(P = 0.001 \)).

There was a significant negative association between dengue cases and the hours of sunshine in Ha Noi and Ca Mau, but a significant positive association in Gia Lai (Fig. 4d); the percentage changes were –3.9% (95% CI: –5.4% to –2.3%, \(P < 0.001 \)), –1.8% (95% CI: –2.5% to –1.1%, \(P < 0.001 \)) and 1.6% (95% CI: 0.2% to 2.9%, \(P = 0.02 \)), respectively.

Test for heterogeneity

The association of humidity, rainfall, temperature, and sunshine with dengue in the different provinces was found to be significantly heterogeneous, \(\chi^2 _{saff} = 38.6, P < 0.001 \), \(\chi^2 _{saff} = 18.4, P = 0.018 \), \(\chi^2 _{saff} = 67.5, P < 0.001 \) and \(\chi^2 _{saff} = 48.8, P < 0.001 \), respectively.

DISCUSSION

In our results, the test of heterogeneity indicated that the impacts of each weather component on dengue cases varied from one area to another. Although Vietnam lies entirely in the tropical monsoon region, it exhibits considerable climatic and topographic diversity from north to south over different latitudes [8]. This contributes to the diversity in the association between weather components and dengue incidence among the nine provinces. Weather and climate variability can induce variation in dengue incidence via the development and survival of vectors or dengue viruses [21, 22]. Moreover, the spatial distribution of both vectors (\(Ae. aegypti \) and \(Ae. albopictus \)) of dengue transmission to humans in Vietnam was reportedly influenced by weather components. In fact, the density of mosquitoes varied between geographic regions, namely, with \(Ae. aegypti \) mainly found in the southern and central regions and \(Ae. albopictus \) mainly found in the northern region, because \(Ae. albopictus \)
prefer cooler temperatures than do *Ae. Aegypti* [5]. Also, it is said that the dengue transmission rate of *Ae. aegypti* is much higher than that of *Ae. albopictus* [25]. Therefore, the diversity of climatic conditions is correlated to the difference in dengue incidence.

A significant association was observed between monthly average temperature and the monthly number of dengue cases with a lag of 0–3 months in five provinces (Fig. 3b). These results confirmed previous findings. For example, a positive association was found in Mexico [13], Puerto Rico [14] and Thailand [26], and a negative association was found in Taiwan [11], while no significant correlation was noted in Trinidad [27] or the Philippines [28]. Temperature strongly influences dengue transmission and epidemic potential because increased temperature accelerates transmission risk by shortening the extrinsic incubation period of the pathogen, the expansion in geographical range and the distribution of vectors [21, 22] or by increasing the daily mortality rate among adult mosquitoes [20]. However, increased temperature up to a certain point reduces the mosquito population by hampering egg production and increasing the survival rate and larva growth [29]. Variations in humidity and rainfall also play an important role and relate to temperature in terms of their effects on the mosquito population [32]. The differences in combinations of humidity, temperature, and rainfall might have positively and negatively influenced vector population size as well as dengue incidence in an alternate manner.

Also, it is known that rainfall affects dengue incidence by changing the vector population size in combination with other weather components. Our results showed a significant positive association between rainfall and dengue incidence in Ha Noi, but a significant negative association in Ba Ria Vung Tau, findings consistent with those of previous studies [14]. Although in general rainfall may serve to increase the mosquito population by providing more mosquito breeding sites, heavy rainfall should reduce the population by destroying those breeding sites [22]. In fact, some study areas other than Ha Noi and Ba Ria Vung Tau had heavy rainfall in some seasons; hence, no significant association was observed with dengue cases. Furthermore, the variability of available water containers and water storage practices affects the association between rainfall and *Ae. aegypti* abundance, and it could also cause the association between rainfall and dengue transmission to vary among areas [33].

The intensity and duration of sunshine exerts an effect on the metabolism and energy of vectors, as they do on the physiological processes of other living organisms. In fact, the light-induced killing of mosquito larvae in *Aedes aegypti* has been reported [34]. Moreover, *Ae. aegypti* is a day-biting species, with biting occurring mainly from two hours after sunrise to several hours before sunset [4]. A previous study in another area of Vietnam—Dak Lak province—revealed a negative association between sunshine duration and the number of dengue cases [35]. Our study shows the heterogeneity of the sunshine-dengue association among areas, with a negative association in Ha Noi and Ca Mau, a positive association in Gia Lai and no significant association in other areas. Sunshine is also closely linked to other ecological factors such as temperature and humidity and thereby might affect the dengue incidence. Therefore, the synergy of sunshine and the other weather components could cause variability in the association with dengue incidence among studied areas.

Some possible weaknesses are inherent in this study. One is the under-reporting of cases. Because asymptomatic or atypical cases could not be identified by the current reporting system, cases without clinical symptoms were excluded from this study. Another is diagnostic accuracy, although misdiagnosis is unlikely because the diagnoses were based on WHO criteria [17] and because dengue is a common disease in these areas, and training in diagnosis and treatment is conducted regularly [16, 36]. A third weakness is the limited number of study sites, particularly the northern region where only Ha Noi was included. Although dengue cases were reported, a lack of complete meteorological data in the other provinces made it impossible to include
them in this study. Furthermore, we did not consider non-
weather components that might influence the distribution
and prevalence of the disease, such as socio-demography,
urbanization, vector-control activities and human behavior
that could influence mosquito populations and contact be-
tween susceptible humans and mosquito vectors. Although
such factors do not vary over the short- to medium-term,
they might be important long-term modifiers of the associa-
tion between weather and dengue fever.

Our study findings confirm that weather components
play an important role in the transmission of dengue fever.
In particular, temperature, rainfall, humidity and sunshine
showed both negative and positive impacts on dengue inci-
dence. However, the direction and degree of its influence on
dengue incidence differs when latitude and topography dif-
fer even within the same country. The heterogeneous nature
of this association might require DF/DHF control measures
to be tailored specifically at the local level in Vietnam.

ACKNOWLEDGEMENTS

We thank Dr. Higa Y for her advice. We would also
like to express our gratitude to the epidemiologists at the
National Institute of Hygiene and Epidemiology and the
Department of Preventive Medicine for their cooperation
and advice concerning data collection.

REFERENCES

1. World Health Organization and the Special Programme for
Research and Training in Tropical Diseases. Dengue:
guidelines for diagnosis, treatment, prevention and control.

2. Edelman R. Dengue vaccines approach the finish line. Clin

trol of communicable diseases manual. 18th ed. Washing-
ton: America Public Health Association; 2004. pp. 146–
149.

5. Higa Y, Yen NT, Kawada H, Son TH, Hoa NT, Takagi M.
Geographic distribution of Aedes aegypti and Aedes albopic-
tus collected from used tires in Vietnam. J Am Mosq

6. Hopp MJ, Foley JA. Worldwide fluctuations in dengue fe-
case related to climate variability. Clim Res 2003; 25:
85–94.

8. Minh TC. General of climate and meteorology. Hanoi:
Vietnam National University Publisher; 2007 (in
Vietnamese).

9. Nam VS, Yen NT, Holynska M, Reid JW, Kay BH. Na-
tional progress in dengue vector control in Vietnam: sur-
vey for Mesocyclops (Copepoda), Micronecta (Corixidae),
and fish as biological control agents. Am J Trop Med Hyg

R. Climate variability and increase in intensity and magni-
itude of dengue incidence in Singapore. Glob Health Action
2009; 2.

11. Wu PC, Guo HR, Lung SC, Lin CY, Su HJ. Weather as an
effective predictor for occurrence of dengue fever in

12. Cuong HQ, Hien NT, Duong TN, Phong TV, Cam NN,
Farrar J, Nam VS, Thai KT, Horby P. Quantifying the

13. Hurtado-Diaz M, Riojas-Rodriguez H, Rothenberg SJ,
Gomez-Dantes H, Cifuentes E. Short communication: im-
act of climate variability on the incidence of dengue in

14. Johansson MA, Dominici F, Glass GE. Local and global
effects of climate on dengue transmission in Puerto Rico.

15. Johansson MA, Cummings DA, Glass GE. Multicycle cli-
mate variability and dengue—El Nino southern oscillation,
weather, and dengue incidence in Puerto Rico, Mexico,

16. Huan TQ. Evaluation of the result of the National project
for the prevention of dengue. Journal of Practical Medicine

17. Pasteur institute Ho Chi Minh city. Diagnosis of dengue fe-
ver/dengue hemorrhagic fever [Internet] [cited 2010 Sep
ytecongdong/sot_dengue/chandoan.htm. (in Vietnamese)

18. Statistical office in Ho Chi Minh city. Statistical yearbook
[Internet] [cited 2011 Oct 3]. Available from: http://
www.pso.hochiminhcity.gov.vn/so_lieu_ktxh/view_content_-
year?ID=khi_tuong_thuy_van&parent_ID=2002. (in Viet-
namese)

H. Transitional regression models, with application to en-

21. Greer A, Ng V, Fisman D. Climate change and infectious
diseases in North America: the road ahead. CMAJ 2008;
7: 3–7 (in Vietnamese).

22. Patz JA, Githeko AK, McCarty JP, Hussein S, Conflaronieri U, de Wet N. Climate change and infectious
diseases. In: McMichael AJ, Campbell-Lendrum DH,
Corvalan CF, Ebi KL, Githeko AK, Scheraga JD,
Woodward A, eds. Climate change and human health—

23. Akaike H. A new look at the statistical model identifica-

24. Duruleman S, Simon R. Flexible regression models with