Implication of nitrate in drinking water in Kawauchi village, Fukushima

Makiko Orita¹, Keita Iyama², Naomi Hayashida³, Norisato Mitsutake², Shinichi Suzuki⁴, Shunichi Yamashita², Noboru Takamura¹

¹Department of Global Health, Medicine, and Welfare, and ²Department of Disaster Medicine and ³Division of Strategic Collaborative Research, Center for Promotion of Collaborative Research on Radiation and Environment Health Effects, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

⁴Department of Thyroid and Endocrinology, Fukushima Medical University School of Medicine, Fukushima, Japan

* Address corresponding to: Noboru Takamura, M.D., Ph.D. Professor, Department of Global Health, Medicine and Welfare, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences

1-12-4 Sakamoto, Nagasaki 852-8523, Japan
Dear Editor:

Four years has passed since the accident at Fukushima Daiichi nuclear power plant (FDNPP). The thyroid ultrasound examination within the framework of the Fukushima Health Survey being conducted in Fukushima Prefecture has targeted all prefectural inhabitants who were less than 18 years of age at the accident (approximately 360,000 inhabitants). The first cycle of screening, which took place between October 2011 and March 2014, showed that amongst 297,046 screened individuals, 112 had confirmed or suspected malignancies. Nevertheless, the causal relationship between radiation exposure and thyroid cancer in this cycle should be carefully evaluated since the radiation dose to the thyroid gland in Fukushima was quite low when compared to that in Chernobyl (the maximum thyroid radiation dose in Fukushima was 35 mSv, whereas the mean dose in Chernobyl was 240 mSv) (1,2), and the ages of children with thyroid cancer were less than 10 years old at the time of the accident in Chernobyl, whereas in Fukushima, so far, no children were less than 5 years and only a few cases were less than 10 years old at the time of the accident (1).

Besides ionizing radiation exposure, nitrate is considered as a risk factor for thyroid
cancers. Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds, which are potent animal carcinogens that cause thyroid and many other tumors in animal models (3). An epidemiological study in older women in Iowa showed an increased risk of thyroid cancer with higher average nitrate levels in public water supplies and with longer consumption of water exceeding 5 mg/L nitrate-N (3). The possibility of a similar relationship between the incidence of thyroid cancer in Fukushima and consumption of nitrate-containing water has not been evaluated. In this report, we conducted a preliminary evaluation of nitrate concentrations in drinking water in Kawauchi village, Fukushima Prefecture, located within 30 km of the FDNPP. We investigated nitrate nitrogen concentrations in the drinking water of Kawauchi village (Total population; 2,700 and total households; 1,100) (4), where all inhabitants use their own private wells as the main source of drinking water. We collected water from 104 household wells in the village (Figure 1) and analyzed the nitrate/nitrite nitrogen concentrations by the naphthylethylene-diamine method (Pack Test, Kyoritsu Chemical-Check Lab., Corp, Tokyo, Japan). The median (25th–75th) nitrate nitrogen level was 0.62 mg/L (0.20–2.51 mg/L), which did not exceed the recommended maximum contamination levels (MCL) of 10 mg/L for nitrate nitrogen in water samples in Japan. The nitrite nitrogen concentrations in any well also did not also exceed
0.005mg/L, the recommended MCL in Japan. Our preliminary results suggested that nitrate in drinking water does not contribute significantly to thyroid disorders in Kawauchi village of Fukushima. In Fukushima Prefecture, many inhabitants usually use tap water. Since tap water is more regulated than private wells, nitrate nitrogen exposure from drinking water is considered to be limited in inhabitants of Fukushima. In addition to investigations including the evaluation of dietary nitrate intake, further epidemiological studies are needed to clarify the factors contributing to the incidence of thyroid diseases, including malignancies, in Fukushima.

Acknowledgements

This publication was supported by research grant (No. 26670460) from Japan Society for the Promotion of Science (JSPS).

Author Disclosure Statement

No competing financial interests exist.

References

1 Accident: Radiation effects on the thyroid and strategies for prevention. Curr Opin
2 Endocrinol Diabetes Obes 21: 384-393.

3 2. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V,
4 Drozdovitch V, aceika E, Zvonova I, Vlassov O, Bouville A, Goulko G, Hoshi M,
5 Abrosimov A, Anoshko J, Astakhova L, Chekin S, Demidchik E, Galanti R, Ito M,
6 Korobova E, Lushnikov E, Maksioutov M, Masyakin V, Nerovnia A, Parshin V,
7 Parshkov E, Piliptsevich N, Pinchera A, Polyakov S, Shabeka N, Suonio E, Tenet V,
8 Tsyb A, Yamashita S, Williams D 2005 Risk of thyroid cancer after exposure to

11 Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology 21:
12 389-395.

14 Determinants of the return to hometowns after the accident at Fukushima Dai-ichi
15 nuclear power plant: a case study for the village of Kawauchi. Radiat Prot
Sampling points of water for the measurement of nitrate/nitrite nitrogen concentrations in Kawauchi village.