Heat shock transcription factor 1-associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading

Author(s)
横山 真吾

Citation
Nagasaki University (長崎大学) 博士 医学 (2016-06-01)

Issue Date
2016-06-01

URL
http://hdl.handle.net/10069/37170

© 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.; This is the accepted version of the following article: Acta Physiologica, 217(4), pp.325–337; 2016, which has been published in final form at http://dx.doi.org/10.1111/apha.12692

NAOSITE: Nagasaki University's Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Heat shock transcription factor 1-associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading

Shingo Yokoyama1,2, Yoshitaka Ohno2, Tatsuro Egawa3, Kazuyuki Yasuhara4, Akira Nakai5, Takao Sugiura6, Yoshinobu Ohira7, Toshitada Yoshioka8, Minoru Okita1, Tomoki Origuchi1, Katsumasa Goto2,3

1Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

2Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi, Japan

3Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi, Japan

4Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki, Japan

5Department of Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube, Japan

6Faculty of Education, Yamaguchi University, Yamaguchi, Japan

7Faculty and Graduate School of Health and Sports Sciences, Doshisha University,
Kyotanabe, Japan

Hirosaki Gakuin University, Hirosaki, Japan

Short title: HSF1 and slow myosin heavy chain

Address for correspondence;

Katsumasa Goto, Ph.D.
Department of Physiology
Graduate School of Health Sciences
Toyohashi SOZO University
20-1 Matsushita, Ushikawa, Toyohashi
Aichi 440-8511
Japan
TEL: +81 50 2017 2272
FAX: +81 532 55 0803
E-mail: gotok@sepia.ocn.ne.jp
Abstract

Aim: The effects of heat shock transcription factor 1 (HSF1)-deficiency on the fiber type composition and the expression level of nuclear factor of activated T cells (NFAT) family members (NFATc1, NFATc2, NFATc3, and NFATc4), phosphorylated glycogen synthase kinase 3α (p-GSK3α) and p-GSK3β, microRNA-208b (miR-208b), miR-499, slow myosin heavy chain (MyHC) mRNAs (Myh7, and Myh7b) of antigravitational soleus muscle in response to unloading with or without reloading were investigated.

Methods: HSF1-null and wild-type mice were subjected to continuous 2-week hindlimb suspension followed by 2- or 4-week ambulation recovery.

Results: In wild-type mice, the relative population of slow type I fibers, the expression level of NFATc2, p-GSK3 (α and β), miR-208b, miR-499, and slow MyHC mRNAs (Myh7 and Myh7b) were all decreased with hindlimb suspension, but recovered after it. Significant interactions between train and time (the relative population of slow type I fibers; p=0.01, the expression level of NFATc2; p=0.001, p-GSKβ; p=0.009, miR-208b; p=0.002, miR-499; p=0.04) suggested that these responses were suppressed in HSF1-null mice.

Conclusion: HSF1 may be a molecule in the regulation of the expression of slow MyHC as well as miR-208b, miR-499, NFATc2, and p-GSK3 (α and β) in mouse soleus muscle.
Key words: heat shock transcription factor 1, myosin heavy chain, nuclear factor of activated T cells, glycogen synthase kinase 3, microRNA
Introduction

Unloading, as well as inactivity, is a major cause of skeletal muscle atrophy, particularly of antigravitational slow-twitch muscle, such as soleus muscle (Fitts et al., 1986, Thomason et al., 1987, Ohira et al., 2006). Furthermore, a slow-to-fast transition of myosin heavy chain (MyHC) isoforms is observed in unloading-associated atrophied slow soleus muscle, resulting in an increase in the relative proportion of fast-twitch fibers (Diffée et al., 1991, Campione et al., 1993, Haddad et al., 1998). Even though several molecules including the nuclear factor of activated T cells (NFAT) family of transcription factors and noncoding microRNAs (miRNAs), especially miR-208b and miR-499, has been proposed, the molecular mechanisms of unloading-associated slow-to-fast transition of MyHC in antigravitational soleus muscle have not yet been fully elucidated.

The NFAT family members, which are activated by a Ca\(^{2+}\)/calmodulin-dependent protein phosphatase calcineurin, play a role as a regulatory factor for the expression of slow MyHC isoforms (Naya et al., 2000). Although the NFAT family consists of five members, NFATc1, c2, c3, c4, and c5 (Rao et al., 1997), only NFATc1–4 are dephosphorylated by calcineurin (Daou et al., 2013). Dephosphorylated NFAT family members translocate to the nucleus, then bind DNA to transcribe the MyHC gene (Allen et al., 2001). Since the inhibition of calcineurin using cyclosporine A and FK506 leads to an increase in the relative proportion of fibers expressing fast MyHC (Chin et al., 1998), it is suggested that
unloading-associated slow-to-fast transition of MyHC might be attributed to suppression of
the nuclear translocation of NFATs (Oishi et al., 2008). However, the up-regulation of
calcineurin has been observed in unloading-associated atrophied rat soleus muscle (Sugiura
et al., 2005). Therefore, calcineurin-associated dephosphorylation activity of NFATs in
response to unloading could not explain a slow-to-fast transition of MyHC in atrophied
skeletal muscle clearly.

On the other hand, NFATc1 among NFAT family members is most extensively studied
in the regulation of slow type I MyHC expression in skeletal muscles (Kubis et al., 2002,
Shen et al., 2007). Furthermore, it has been reported that NFATc1 plays a
calcineurin-dependent nerve activity sensor (Tothova et al., 2006), and that four NFAT
family members (NFATc1–4) play a specific role in modulating adult muscle fiber types in
response to nerve activity (Calabria et al., 2009). Slow type I MyHC is expressed when all
four NFAT members are actively translocated to nucleus, and fast type IIb MyHC is
expressed with nuclear NFATc4 alone. These observations suggest that the expression of
slow type I MyHC is highly regulated by not only the expression level but also the
subcellular localization of NFAT family members.

It has been reported that the expression of NFATc2 is regulated by heat shock
transcription factor 1 (HSF1), which mediates the stress response in mammalian skeletal
muscle, up-regulates heat shock proteins (HSPs) by binding the heat shock element protein
(Lindquist, 1986), in mouse embryonic fibroblast (MEF) cells (Hayashida et al., 2010). In HSF1-null MEF cells, the basal expression of NFATc2 was suppressed, compared with wild-type cells. Furthermore, heat stress up-regulated NFATc2 expression in wild-type cells, but not HSF1-null MEF cells (Hayashida et al., 2010). These observations strongly suggest that HSF1 may regulate the expression level of MyHC though the HSF1-mediated NFATc2 expression in skeletal muscle cells. However, there is no evidence regarding the role of HSF1 in the expression levels of not only NFAT family members, especially NFATc2, but also MyHC isoforms in skeletal muscles.

The subcellular localization of NFAT is regulated by its phosphorylation level. Even though the dephosphorylation of NFAT by calcineurin in regulation of MyHC phenotypes in skeletal muscle has been extensively studied, its phosphorylation by kinases is poorly understood. In the nucleus, NFAT is phosphorylated by kinases, such as glycogen synthase kinase 3 (GSK3), casein kinase 1 (CK1), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), then exported from the nucleus to the cytoplasm (Shen et al., 2007). The GSK3 family of serine/threonine kinases is identified as a negative regulator of glycogen synthase, and plays a role as the rate-limiting enzyme in glycogen synthesis (Woodgett et al., 1982). The GSK3 family consists of 2 isoforms, α and β, which are 98% identical within their kinase domains but differ substantially in their N- and C-terminal sequences. It has been well known that the GSK3β family of serine/threonine kinases, which
is downstream of phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, is involved in
glycogen synthesis and plays as a negative regulator of protein synthesis (Glass, 2003). On
the other hand, it has been reported that GSK3β phosphorylates NFATc1 in muscle nuclei
(Shen et al., 2007). Therefore, GSK3β may also play a role in the regulation of MyHC
phenotypes. Although the suppression of phosphorylation level of GSK3β and other
downstreams of PI3K-Akt signaling pathway accompanying with decreased expression of
slow type I MyHC during hindlimb unloading has been reported (Dupont et al., 2011), a role
of GSK3 in the regulation of fiber types in skeletal muscle remains unclear. Furthermore,
there is no report regarding the relationship between GSK3β and HSF1 in skeletal muscles.

It has been also shown that increased GSK3 activity plays a role in insulin resistance
(Wojtaszewski et al., 2001, Ciaraldi et al., 2007) and the activity of GSK3α is higher than
GSK3β in rat soleus (Abaffy and Cooper, 2004). However, the responses of GSK3α in
skeletal muscles to unloading followed by reloading is still unknown.

In addition to NFAT family-mediated regulation of MyHC phenotypes, it has been also
reported that miR-208b and miR-499 also play a role in the expression of slow MyHC (van
Rooij et al., 2009, McCarthy et al., 2009, Gan et al., 2013). Down-regulation of both
miRNAs suppresses the expression slow MyHC via the suppression of Myh7 gene, which is
regulated by miR-208b, and Myh7b gene, which is regulated by miR-499 (van Rooij et al.,
2009, McCarthy et al., 2009, Gan et al., 2013). However, there is no evidence regarding the
role of HSF1 in the expression levels of not only miRNAs, miR-208b and miR-499, but also
Myh7 and Myh7b in skeletal muscles.

Therefore, we investigated the effects of HSF1 deficiency on the fiber type
composition of mouse antigravitational soleus muscle in response to unloading with or
without reloading using HSF1-null mice. Furthermore, HSF1-associated regulation of NFAT
family members, GSK3, miR-208b, miR-499, and slow MyHC mRNAs (Myh7 and Myh7b)
were also investigated since these molecules may be involved in the regulation of MyHC
phenotypes in skeletal muscle.

Materials and Methods

Animals

All experimental procedures were carried out in accordance with the Guide for the
Care and Use of Laboratory Animals as adopted and promulgated by the National Institutes
of Health (Bethesda, MD, USA) and were approved by the Animal Use Committee of
Toyohashi SOZO University (2007001). All treatments for animals were performed under
anesthesia with i.p. injection of sodium pentobarbital, and all efforts were made to prevent
discomfort and suffering. Male HSF1-null and wild-type (Imprinting Control Region) mice
were prepared as previously described (Inouye et al., 2004). Mice at 10 to 15 weeks of age
were used in this experiment ($n = 20$ for each mouse strain).
Hindlimb suspension was performed following the methods as described previously (Yasuhara et al., 2011). Briefly, tails of the mice were cleaned, and were loosely surrounded by adhesive tapes cross-sectionally, with a string fixed at the dorsal side of the tail, to keep the blood flow intact. The string was fastened to the roof of the cage at a height allowing the forelimbs to support the weight, yet preventing the hindlimbs from touching the floor and the sides of the cage (20 × 31 cm and 13.5 cm height). The mice could reach food and water freely by using their forelimbs. Immediately after the 2-week hindlimb suspension, ambulation recovery was allowed for 10 mice in the suspended group. During recovery, mice were housed in cages of the same size as described above. Mice in the pre-experimental control group were also housed in the cage of the same size. All mice were housed in a vivarium room with 12-h:12-h light:dark cycle and with temperature and humidity maintained at ~23°C and at ~50%, respectively. Solid food and water were provided ad libitum.

Sampling

Five mice of each strain were sacrificed at baseline (untreated pre-experimental control; Pre), and at 0, 2 and 4 weeks after 2-week hindlimb suspension. Soleus, but not
plantaris and gastrocnemius, muscle was used in the present study, even though some studies showed comparable atrophy in mouse soleus, plantaris, and gastrocnemius muscles following unloading (Brocca et al., 2010, Hunter and Kandarian, 2004, Mitchell and Pavlath, 2001). The soleus muscles of the suspended group were dissected from hindlimbs immediately, 2, and 4 weeks after the 2-week suspension under sodium pentobarbital anesthesia. The muscles of the pre-experimental control group were also dissected at the same respective timing, trimmed of excess fat and connective tissues, weighed, frozen in liquid nitrogen, and stored at −80°C.

Immunofluorescence fiber typing

Serial transverse cryosections (8-μm thick) of the midbelly region of the frozen right soleus muscles were cut at −20°C and mounted on slide glasses. The sections were air-dried and stained to analyze the muscle fiber typing by a standard immunohistochemical technique: Cross sections were fixed with paraformaldehyde (4%), and then post-fixed in ice-cold methanol. After blocking using a reagent (1% Roche Blocking Regent; Roche Diagnostics, Penzberg, Germany), sections were incubated with primary antibodies for slow type I MyHC (BA-F8, Developmental Studies Hybridoma Bank [DSHB], Iowa City, IA, USA) and fast type IIa MyHC (SC-71, DSHB). Sections were also incubated with secondary antibodies for anti-mouse IgG2b labeled with Alexa Flour 555 (diluted 1:200, Invitrogen,
192 Eugene, OR, USA) and anti-mouse IgG1 labeled with Alexa Flour 488 (diluted 1:200,
193 Invitrogen). Images of muscle sections were obtained using a microscope (IX 81, Olympus,
194 Tokyo, Japan) and imported into a personal computer (DP Manager Version 2.2.1.195,
195 Olympus). The percentage of each fiber type, namely type I, IIa, and IIb/IIx, relative to total
196 fibers in the whole cross section was calculated, based on ~100 fibers per section.
197
198 **Immunoblotting analyses**
199 The expression of NFATc1, NFATc2, NFATc3, NFATc4, phosphorylated GSK3α
200 (p-GSK3α), total GSK3α, phosphorylated GSK3β (p-GSK3β), total GSK3β, and β-actin
201 proteins were assessed by immunoblotting assay. Proximal portions of the frozen left soleus
202 muscles were homogenized in an isolation buffer of tissue lysis reagent (CelLytic-MT,
203 Sigma-Aldrich, ST. Louis, MO, USA) with 1% (v/v) Protease/Phosphatase Inhibitor Cocktail
204 (#5872, Cell Signaling Technology Inc., Danvers, MA, USA) with a glass homogenizer. The
205 homogenates were centrifuged at 15,000 × g (4°C for 15 min), and the supernatant was
206 collected. A part of the supernatant was solubilized in SDS sample buffer (30% v/v glycerol,
207 10% v/v 2-mercaptoethanol, 2.3% w/v SDS, 62.5 mM Tris-HCl, 0.05% w/v bromophenol
208 blue, pH 6.8) at a concentration of 0.5 mg of protein ml⁻¹ and was incubated at 95°C for 5
209 min. SDS- PAGE was carried out on 8 or 12.5% polyacrylamide containing 0.5% SDS at a
210 constant current of 20 mA for 120 min as described previously (Yasuhara et al., 2011,
Nishizawa et al., 2013, Koya et al., 2013). Equal amounts of protein (10 μg) were loaded on each gel. Molecular weight markers (#161-0374, Bio-Rad, Hercules, CA, USA) were applied to both sides of 14 lanes as the internal controls for the transfer process and electrophoresis.

Following SDS-PAGE, proteins were transferred to polyvinylidene fluoride membrane (0.2-μm pore size, Bio-Rad) at a constant voltage of 100 V for 60 min at 4°C. The membranes were blocked for 1 h at room temperature in a blocking buffer: 5% (w/v) skim milk with 0.1% Tween 20 in Tris-buffered saline (TBS) at pH 7.5. The membranes were then incubated for 1 h with polyclonal antibodies for NFATc1 (sc-13033, Santa Cruz Biotechnology, Dallas, TX, USA), NFATc2 (#4386, Cell Signaling Technology), NFATc3 (sc-8321, Santa Cruz Biotechnology), NFATc4 (ab62613, Abcam, Cambridge, UK), p-GSK3α (#9316, Cell Signaling Technology), total GSK3α (#4337, Cell Signaling Technology), p-GSK3β (#5558, Cell Signaling Technology), total GSK3β (#9315, Cell Signaling Technology), β-actin (#4967, Cell Signaling Technology), and then reacted with a secondary antibodies (goat anti-rabbit or horse anti-mouse IgG horseradish peroxidase-linked antibody, Cell Signaling Technology). After the final wash protein bands were visualized by chemiluminescence (ECL Select Western blotting kit; GE Healthcare, UK) and signal density was measured by Light-Capture (AE-6971) using CS Analyzer version 2.08b (ATTO Corporation, Tokyo, Japan). Each sample was investigated in duplicate, at least, to ensure that results were not influenced by loading errors. The densities of β-actin
were evaluated to verify equal loading. Standard curves were constructed during the preliminary experiments to ensure linearity.

Real-time reverse transcription-polymerase chain reaction (Real-time RT-PCR)

Real-time RT-PCR analysis was performed, as was described previously (Egawa et al., 2014). Briefly, total RNA was extracted from the distal portions of the muscles using the miRNeasy Mini kit (Qiagen, Hiden, Germany) according to the manufacturer’s protocol. For the analyses of Myh7 and Myh7b, the RNA was reverse-transcribed to cDNA using PrimeScript RT Master Mix (Takara Bio, Otsu, Japan). Real-time RT-PCR was then performed on the cDNA (Thermal Cycler Dice Real Time System IIMRQ, Takara Bio) using Takara SYBR Premix Ex Taq II (Takara Bio). For the analyses of miR-208b and miR-499 RNA, cDNA was reverse-transcribed using a Mir-X™ 198 miRNA First Strand Synthesis Kit (Clontech Laboratories, CA, USA), and then real-time RT-PCR performed using a Mir-X™ 200 miRNA qRT-PCR SYBR Kit (Clontech Laboratories). The real-time cycle conditions were 95°C for 30 s followed by 40 cycles at 95°C for 5 s and at 60°C for 30 s for mRNA. The relative fold change of expression was calculated by the comparative threshold cycle (CT) method using Takara Thermal Cycler Dice Real Time System Software Ver. 4.00 (Takara Bio). To normalize for the amount of total RNA present in each reaction, GAPDH
for Myh7 and Myh7b, and U6 for miR208b and miR499 were used as internal standards.

Primers were designed by using the Takara Bio Perfect Real Time Support System (Takara Bio). The following primers were used: Myh7,

5′-GCCAACTATGCTGGAGCTGATGCCC-3′ (forward) and

5′-GGTGCGTGAGGAGCAAGTTGTCAATAAAG-3′ (reverse); Myh7b,

5′-ATGCAGGACCTGGTGACCA-3′ (forward) and

5′-CTTGCGGTACTTAGCCAGGTTG-3′ (reverse); GAPDH,

5′-TGTGTCCGTCGATCCCACTGATCTGA-3′ (forward) and

5′-TTGCTGTTGAAAGTCGAGAAG-3′ (reverse); miR-208b,

5′-ACAAAACCTTTTGTTGATGCTTT-3′ (forward); miR-499, 5′-ACATCACTGCAAGTCTT-3′ (forward). The U6 primer and reverse primers for miRNAs were provided with the kit.

Statistical analyses

All values were expressed as means ± SEM. Statistical significance was analyzed by using two-way (strain and time) ANOVA followed by Tukey–Kramer post hoc test. The significance level was defined as p<0.05.

Results

Body weight and soleus muscle wet weight
Changes in body weight, absolute muscle wet weight, and muscle weight relative to body weight of HSF1-null and wild-type mice are shown in Figure 1. There was a significant difference in body weight during the experimental period between HSF1-null and wild-type mice (p=0.00002, strain effect). A significant time effect was also observed (p=0.003). There was a significant time effect in absolute muscle wet weight (p=0.002) and muscle weight relative to body weight (p=0.02) during the experimental period. Significant decreases in soleus muscle weight in both types of mice were observed following 2-week hindlimb suspension (p<0.05). In wild-type mice, soleus muscle weight increased by 67% after 2-week recovery following the suspension. However, soleus muscle weight of HSF1-null mice only increased by 40% after 2-week recovery.

Fiber type composition of soleus muscle

First of all, we investigated the effects of HSF1 deficiency on the fiber type composition. Adult mouse soleus muscles have major populations of slow type I and fast type IIa MyHC, with a minor population of fibers expressing fast type IIb or IIx MyHC (Sandona et al., 2012). To determine the fiber type composition of soleus muscles serial muscle cryosections were stained with monoclonal antibodies specific for slow type I and fast IIa MyHC subtypes. Type IIb/IIx fibers were identified by the absence of reactivity to two antibodies (Figure 2A). Therefore, we did not distinguish between type IIb and IIx
Figure 2B shows the responses of the fiber type composition of soleus muscle from HSF1-null and wild-type mice to hindlimb unloading with or without reloading. There was a significant interaction in the response of the relative populations of type I (p=0.01) and IIa (p=0.03) fiber to 2-week hindlimb suspension followed by 4-week ambulation recovery between strain and time during the experimental period. In wild-type mice, the relative populations of type I, IIa, and IIb/x fibers of control soleus muscle were ~50%, ~39%, and ~10%, respectively. The relative populations (~38%) of type I control soleus muscle in HSF1-null mice was significantly lower than that in wild-type mice (p=0.04). However, the IIb/x fibers of control soleus muscle in HSF1-null mice were significantly higher than those in wild-type mice (p=0.04).

In wild-type mice, a significant decrease in the relative population of type I fibers (p=0.003) and a significant increase in the population of type IIa fibers (p=0.001) were observed immediately after the hindlimb suspension and after 2-weeks of recovery following the suspension, compared with the pre-experimental controls. However, no significant changes in fiber type composition of soleus muscle in HSF1-null mice were observed during the experimental period.

Expressions of NFAT isoforms
Since small population of type I fibers in HSF1-null mice may be attributed to the lower expression levels of NFAT family members compared with wild-type mice, we investigated the effects of HSF1 deficiency on the basal expression level of NFAT family members, NFATc1, c2, c3, and c4 (Figure 3). Basal expression level of NFATc2 in HSF1-null mice was significantly lower ~81% than that in wild-type mice (p=0.0003). However, there was no difference between HSF1-null and wild-type mice in the basal expression levels of NFATc1, c3, and c4.

Furthermore, we also investigated the changes in the expression levels of NFAT family members in response to hindlimb suspension followed by ambulation recovery (Figure 3). There was a significant time effect in expressions of NFATc1 during the experimental period (p=0.0008). A significant increase of NFATc1 expression in both types of mice was observed following 2-weeks of hindlimb suspension (p<0.05). The expression level of NFATc1 in both types of mice was then decreased during the recovery period.

There was a significant interaction between strain and time in the expressions of NFATc2 following 2-week hindlimb suspension and ambulation recovery (p=0.001). In wild-type mice, a significant decrease in the expression of NFATc2 was observed following 2-week hindlimb suspension (p=0.006) and a 4-week recovery (p=0.0002), compared with the values at the pre-experimental control. The expression level of NFATc2 in wild-type mice after 2 weeks of recovery (R2) was significantly higher than that of immediately after
the suspension (R0). However, there was no significant change in NFATc2 expression in soleus muscle in HSF1-null mice in response to suspension followed by ambulatory recovery. No significant change in the expression levels of NFATc3 and c4 during the experimental period was observed in either mouse strain.

Phosphorylation level of GSK3α and GSK3β

Since GSK3β phosphorylates NFATc1 in muscle nuclei (Shen et al., 2007). We hypothesized that higher activity of GSK3 may be attributed to the small population of type I fibers in HSF1-null mice, in part. The basal phosphorylation levels of GSK3α and GSK3β in soleus muscles in wild-type mice were significantly lower than those in HSF1-null mice (p=0.0006 and p=0.00002, respectively, Figure 4). GSK3α and GSK3β activities in soleus muscle in HSF1-null mice might be significantly higher than those in wild-type mice, because GSK3 activity is negatively regulated by its phosphorylation.

Figure 4 also shows the changes in the phosphorylation levels of GSK3α and GSK3β in soleus muscles in response to hindlimb suspension followed by ambulation recovery. There was a significant difference in the phosphorylation level of GSK3α during the experimental period between HSF1-null and wild-type mice (p=0.0003, strain effect). A significant time effect was also observed (p=0.02). There was a significant interaction between strain and time in the phosphorylation level of GSK3β following hindlimb
suspension and ambulation recovery (p=0.009).

In wild-type mice, a large decrease in the phosphorylation levels of GSK3α and GSK3β was observed following 2-week hindlimb suspension. The suppression of both enzymes was stable during the 4-week recovery period. The phosphorylation level of GSK3β in pre-experimental controls was significantly higher than that immediately after hindlimb suspension (R0), 2-week recovery (R2) and 4-week recovery (R4) (p=0.0001, p=0.01 and p=0.00001, respectively). However, there was no significant change in the phosphorylation level of GSK3β in HSF1-null mice in response to hindlimb unloading followed by 4-weeks of recovery.

Expression levels of miRNAs

We also investigated the effects of HSF1 deficiency on the expression level of miR-208b and miR-499, which play a crucial role in regulation of slow type I MyHC expression. The basal expression levels of miR-208b and miR-499 in control soleus muscles in HSF1-null mice were significantly lower than those in wild-type mice (p=0.0007 and p=0.03, respectively, Figure 5).

Changes in the expressions of miRNAs (miR-208b and miR-499) are shown in Figure 5. There was a significant interaction between strain and time in the expressions of miR-208b (p=0.002) and miR-499 (p=0.04) following hindlimb suspension followed by
ambulation recovery. The expression levels of both miRNAs in HSF1-null mice were stable during the experimental period. However, in wild-type mice, significant decreases in the expression levels of miR-208b and miR-499 were observed in response to 2-week hindlimb suspension (p<0.05), then showing a trend towards recovery to control levels. There were significant differences between HSF1-null and wild-type mice in the expression levels of miR-208b after 2- (p=0.005) and 4-week recoveries (p=0.0004).

Expression levels of slow MyHC mRNAs

We also investigated whether lower expression level of miR-208b and miR-499 in HSF1-null mice was accompanied by the lower expression levels of slow MyHC mRNAs, Myh7 and Myh7b, since miR-208b and miR-499 play as post-transcriptional regulators of Myh7 and Myh7b, respectively (van Rooij et al., 2009, McCarthy et al., 2009, Gan et al., 2013). The basal expression levels of Myh7 and Myh7b mRNAs in control soleus muscle in HSF1-null mice were lower than those in wild-type mice (Figure 6).

Changes in the expressions of Myh7 and Myh7b in response to hindlimb suspension followed by reloading are shown in Figure 6. There was a significant difference in the expressions of Myh7 (p=0.03) and Myh7b (p=0.009) mRNAs during the experimental period between HSF1-null and wild-type mice (strain effect). The expression level of both mRNAs in wild-type mice and Myh7 mRNA in HSF1-null mice showed a trend towards a decrease in
response to hindlimb suspension, then recovery to control levels. Myh7 mRNA in wild-type and HSF-null mice were decreased by 75% and 68% following hindlimb suspension, respectively. However, the expression level of Myh7b mRNA in HSF1-null mice was stable during the experimental period.

Discussion

The present study showed that the relative population of slow type I fibers, the expression level of NFATc2, p-GSK3α/β, miR-208b, miR-499, and slow MyHC mRNAs (Myh7 and Myh7b) in mouse soleus muscle were suppressed by the absence of the HSF1 gene. In wild-type mice, the expression levels of these molecules decreased immediately after hindlimb suspension, then recovered to control levels. Unloading-associated decrease in the population of slow type fiber as well as the expression level of NFATc2, miR-208b, miR-499, p-GSK3α/β, and Myh7b mRNA in mouse soleus muscle was attenuated by HSF1 deficiency.

Effects of HSF1 deficiency on the expression level of slow MyHC mRNAs and the fiber type composition in response to unloading with or without reloading

In the present study, there was no significant difference between wild-type and HSF1-null mice in the degree of muscle atrophy induced by unloading. However, the
recovery of atrophied soleus muscle mass was partially retarded by the absence of HSF1
gene. These results are consistent with a previous study (Yasuhara et al., 2011).
This study revealed a low basal expression level of slow MyHC mRNAs (Myh7 and
Myh7b), the population of slow fibers expressing type I MyHC, and a high basal population
of fast fibers expressing type IIb/x MyHC in soleus muscle in HSF1-null mice, compared
with wild-type mice. This is the first report showing the effects of HSF1 deficiency on slow
MyHC and fiber type composition in mouse soleus muscle. Furthermore,
unloading-associated slow-to-fast transition of fiber types in soleus muscle was observed in
wild-type mice, but not in HSF1-null mice. This transition was accompanied with the decline
of Myh7 mRNA expression level. There are many reports showing that gravitational
unloading increases in the population of fast fibers expressing type IIa and/or IIx MyHC in
mammalian antigravitational soleus muscle (Caiozzo et al., 1997, Thomason and Booth,
1990, Diffee et al., 1991, Campione et al., 1993, Haddad et al., 1998). However, this is the
first study reporting the responses of the expression levels of slow MyHC mRNAs and the
fiber type composition to hindlimb unloading with or without reloading in HSF1-null mice.
The present study demonstrated that the expression level of both Myh7 and Myh7b
mRNAs in wild-type mice showed a trend towards a decrease in response to hindlimb
 suspension, then recovery to control levels. This trend was similar with the composition of
slow type I fiber population in response to unloading followed by reloading. However, the
magnitude of these changes in mRNAs are larger than that in type I MyHC. Similar tendency was also observed in the basal expression level of Myh7 and Myh7b mRNAs. Basal expression level of mRNAs in HSF1-null mice was lower ~71% and ~35% than wild-type mice. Similar phenomena have been reported by several researchers (Lodka et al., 2015, Reilly et al., 2000). Unknown mechanisms may be involved in the post-translational regulation of MyHC. Some researchers reported that the number of hybrid fibers may increase in unloaded soleus muscle. Although, in the present study, we also counted the number of hybrid fibers, it was less than 2% in all groups. Therefore, we have no clear explanation about this phenomena at present.

Possible mechanism(s) of miRNAs in the basal expression level of slow MyHC

In relation to a possible role of miRNAs-dependent mechanisms in HSF1 deficiency-associated suppression of slow type I MyHC, we investigated the expression level of miR-208b and miR-499 in soleus muscle. This revealed a low basal expression level of miR-208b and miR-499 of soleus muscle in HSF1-null mice, compared with wild-type mice. This is the first study investigating the expression levels of miR-208b and miR-499 in the skeletal muscle of HSF1-null mice. Although HSF1 regulates various miRNAs (Feng et al., 2014, Das and Bhattacharyya, 2014, Li et al., 2014), there has been no previous report showing HSF1-dependent regulation of miR-499 and 208b.
It has been reported that the expression level of slow MyHC mRNAs (Myh7 and Myh7b) are highly regulated by miR-208b and miR-499, respectively (Gan et al., 2013, McCarthy et al., 2009, van Rooij et al., 2009). In the present study, the basal expression level of Myh7 and Myh7b mRNAs in HSF1-null was significantly lower than that in wild-type mice. Even though we have no clear explanation for the low basal expression levels of miR-208b and miR-499, their expression levels could explain the population of slow fibers expressing type I MyHC.

Possible mechanism(s) of GSK3/NFAT-dependent signals in the basal expression level of slow MyHC

To investigate a possible role of GSK3/NFAT-dependent mechanism(s) in HSF1 deficiency-associated suppression of slow type I MyHC, we evaluated the expression level of NFAT family members and p-GSK3α/β in soleus muscles. We found low basal expression levels of NFATc2 and p-GSK3β in soleus muscle in HSF1-null mice, compared with wild-type mice. Since a previous study reported HSF1-dependent up-regulation of NFATc2 in MEF cells (Hayashida et al., 2010), HSF1 may play a role in the up-regulation of NFATc2 in soleus muscle cells. It has been reported that the knockdown of NFATc2 and NFATc4 induced the suppression of type I MyHC in human skeletal muscle myoblasts (Yamaguchi et al., 2013). Although in the present study the expression level of NFATc2 in soleus mouse
muscle was suppressed by HSF1 deficiency, the expression levels of NFATc4 in wild-type
and HSF1-null mice were comparable. Therefore, the basal population of slow type I fibers
in mouse soleus muscle may be regulated by the expression level of NFATc2, but not
NFATc4.

This is the first study investigating the expression level of GSK3 (GSK3α and GSK3β)
in the skeletal muscle of HSF1-null mice. Although a molecular mechanism of
HSF1-deficiency-associated suppression of GSK3 remains unclear, low expression levels of
p-GSK3, which means high activity of GSK3, might stimulate the export of nuclear NFAT
(Neal and Clipstone, 2001, Beals et al., 1997), and depress the content of NFATs in the
nucleus. It has been reported that GSK3 plays a role in the up-regulation of slow MyHC2 in
chicken skeletal muscle fiber (Jiang et al., 2006). A GSK3-dependent mechanism might also
play a role in modulating the population of slow fibers in skeletal muscle.

Possible mechanism(s) of miRNAs- and GSK3/NFAT-dependent signals in the expression
levels of slow MyHC in response to unloading with or without reloading

In this study, the responses of miRNAs (miR-208b and miR-499), NFATc2, and
p-GSK3 (α and β), to unloading with or without reloading in HSF1-null mice were different
from those in wild-type mice. In wild-type mice, the expression levels of miR-208b,
miR-499, NFATc2, and p-GSK3 (α and β) decreased in response to unloading, and miR-208b,
miR-499, and NFATc2, but not p-GSK3 (α and β), transiently increased during recovery. Previous studies have also showed unloading-associated suppression of miR-208b and miR-499 in rat soleus muscle (McCarthy et al., 2009). Regarding the expression level of p-GSK3β in response to unloading and reloading, the responses to unloading were controversial among the previous studies. In rat soleus muscle, p-GSK3β expression was decreased by 2-week hindlimb suspension (McCarthy et al., 2009). This result was consistent with that of the present study. There is, however, a report that p-GSK3β expression in mouse soleus muscle exhibited no change following 2-week hindlimb unloading (van der Velden et al., 2007, White et al., 2015). Furthermore, 10-day hindlimb immobilization had no effect on the expression level of p-GSK3β in rat soleus muscle (Childs et al., 2003). On the other hand, reloading-associated up-regulation of p-GSK3β was observed in unloaded soleus muscle of rat and mouse (Dupont et al., 2011, van der Velden et al., 2007). There is no report regarding the effects of hindlimb unloading and reloading on the expression of p-GSK3α.

Expression of these molecules in HSF1-null mice was stable during hindlimb unloading with or without reloading. This is the first investigation showing the responses of the expression levels of miR-208b, miR-499, NFATc2, and p-GSK3 (α and β) in soleus muscle in HSF1- null mice. Taken together with a roles of miRNAs-, NFATc2-, and GSK3-dependent mechanisms in the modulation of slow type I MyHC, the
unloading-associated decrease in the population of slow fibers might be attributed to low expression levels of miR-208b, miR-499, NFATc2, and p-GSK3. Therefore, miRNAs-, NFATc2-, and GSK3-dependent mechanisms might play a crucial role in the unloading-associated slow-to-fast transition of fibers types in soleus muscle. However, reloading-associated expression of MyHC in atrophied soleus muscle could not be explained by changes in the expression levels of these molecules, since the activities of NFATc2 and pGSK3 in mechanisms of MyHC regulations depend mostly on phosphorylation and translocation to and out of myonuclei. Furthermore, the involvement of FOXO transcription factor 1, one of the negative regulators of PI3K/Akt signaling pathway, in slow type MyHC regulation (Sandri et al., 2004, Kamei et al., 2004) has been proposed. MyHC phenotypes in response to reloading on atrophied soleus muscle might be regulated by other, currently unknown, mechanism(s).

In conclusion, the basal expression of slow MyHC mRNAs, Myh7 and Myh7b, and the population of slow type I fibers in mouse soleus muscle was suppressed by the absence of HSF1. Furthermore, unloading-associated decline of Myh7b mRNA expression and the number of slow type fiber in mouse soleus muscle were attenuated by HSF1 deficiency. These observations suggests that HSF1 may be a molecule in the regulation of the expression of slow MyHC as well as miR-208b, miR-499, NFATc2, and p-GSK3 (α and β) in mouse soleus muscle.
Acknowledgments

The authors thank Dr. L. L. Tang of the Department of Physiology, Graduate School of Health Sciences, and Toyohashi SOZO University for his technical assistance.

Conflicts of interest

The authors state that there are no conflicts of interest.

Grants

This study was supported, in part, by Grants-in-Aid for Challenging Exploratory Research (26560372, KG), and Grants-in-Aid for Scientific Research (C, 26350818, TY) from the Japan Society for the Promotion of Science, the Uehara Memorial Foundation (KG), the Naito Foundation (KG), and Graduate School of Health Sciences, Toyohashi SOZO University (KG).
References

FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. *Journal of Biological Chemistry*, **279**, 41114-23.

Nishizawa, S., Koya, T., Ohno, Y., Goto, A., Ikuita, A., Suzuki, M., Ohira, T., Egawa, T.,

Ohira, Y., Yoshinaga, T., Ohara, M., Kawano, F., Wang, X. D., Higo, Y., Terada, M.,

Shen, T., Cseresnyes, Z., Liu, Y., Randall, W. R. & Schneider, M. F. 2007. Regulation of the nuclear export of the transcription factor NFATc1 by protein kinases after slow fibre

van Rooij, E., Quiat, D., Johnson, B. A., Sutherland, L. B., Qi, X., Richardson, J. A., Kelm,

Legends of figures

Figure 1. Changes in body weight and soleus muscle wet weight in response to 2-week hindlimb suspension followed by ambulation recovery. HSF1\(^{+/+}\): wild-type mice; HSF1\(^{-/-}\): heat shock transcription factor 1 null mice; Relative muscle weight: the muscle weight relative to body weight; Pre: before hindlimb suspension; R0, R2, and R4: recovery 0, 2, and 4 weeks, respectively. interaction: strain x time. ns: not significant. Values are means ± SEM; \(n = 5\)/mouse strain at each time point.

Figure 2. Typical transverse cryosections of the midbelly region of soleus muscle stained by immunofluorescence (A). Changes in the relative population of fiber type expressing MyHC of soleus muscle in response to 2-week hindlimb suspension followed by 4-week ambulation recovery (B). 1: type I fiber, 2a: type IIa fiber, 2bx: type II and/ or type 2x fiber. Scale bars = 50 \(\mu\)m. Values are means ± SEM; \(n = 5\)/mouse strain at each time point. *: \(p<0.05\). See Figure 1 for other abbreviations, statistics, and symbols.

Figure 3. Expressions of NFAT isoforms in soleus muscle in response to hindlimb suspension followed by ambulation recovery. Representative expression patterns of NFATc1, NFATc2, NFATc3, NFATc4, and internal control \(\beta\)-actin (A). Changes in the mean levels of NFATc1, c2, c3, and c4 (B). Values are expressed relative to the value before hindlimb
Figure 4. GSK3α and GSK3β phosphorylation in soleus muscle in response to hindlimb
suspension followed by ambulation recovery. Representative expression patterns of
phosphorylated GSK3α (p-GSK3α), total GSK3α, p-GSK3β and total GSK3β (A). Changes
in the mean phosphorylation level of GSK3α and GSK3β (B). Values are expressed relative
to the value before hindlimb suspension in HSF1+/+ (1.0). Values are means ± SEM; n =
5/mouse strain at each time point. See Figure 1 for other abbreviations, statistics, and
symbols. *: p<0.05.

Figure 5. Expressions of microRNAs (miR-208b and miR-499) in soleus muscle in response
to hindlimb suspension followed by ambulation recovery. Values are expressed relative to the
value before hindlimb suspension in HSF1+/+ (1.0). Values are means ± SEM; n = 5/mouse
strain at each time point. *: p<0.05. See Figure 1 for other abbreviations, statistics, and
symbols.

Figure 6. Expressions of slow myosin heavy chain (MyHC) mRNAs (Myh7 and Myh7b) in
soleus muscle in response to hindlimb suspension followed by ambulation recovery. Values
are expressed relative to the value before hindlimb suspension in HSF1\(^{++}\) (1.0). Values are
means ± SEM; \(n = 5\)/mouse strain at each time point. *: \(p < 0.05\). See Figure 1 for other
abbreviations, statistics, and symbols.
<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>R0</th>
<th>R2</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSF1+/+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSF1−/−</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Absolute muscle wet weight (mg)**

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>R0</th>
<th>R2</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF1+/+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSF1−/−</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Relative muscle wet weight (mg/g)**

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>R0</th>
<th>R2</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSF1+/+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSF1−/−</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis:
- **Strain effect**: p<0.05
- **Time effect**: p<0.05
- **Interaction**: ns

Figure 1
Figure 2

A. Immunofluorescence images showing the relative population of HSF1+/+ and HSF1-/- strains before and after treatment. The images are labeled with time points: Pre, R0, R2, and R4.

B. Bar graphs representing the relative population (%) of HSF1+/+ and HSF1-/- strains at different time points. The graphs indicate the effect of strain and time on the population distribution, with interactions as noted:

1. Strain effect: ns Time effect: ns Interaction: p<0.05
2a. Strain effect: ns Time effect: ns Interaction: p<0.05
2b/x. Strain effect: ns Time effect: p<0.05 Interaction: ns

Figure 2
Figure 3

A

NFATc1
NFATc2
NFATc3
NFATc4
β-actin

B

NFATc1
NFATc2
NFATc3
NFATc4

Relative expression

Pre R0 R2 R4

strain effect: ns time effect: p<0.05
interaction: ns

strain effect: ns time effect: ns
interaction: ns

strain effect: ns time effect: ns
interaction: ns

strain effect: ns time effect: ns
interaction: ns
Figure 4

A

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>R0</th>
<th>R2</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-GSK3α

GSK3α

p-GSK3β

GSK3β

B

p-GSK3α/GSK3α

p-GSK3β/GSK3β

Relative expression

Strain effect: p<0.05 Time effect: p<0.05 Interaction: ns

Strain effect: ns Time effect: ns Interaction: p<0.05
Figure 5

Relative expression of miR-208b and miR-499 in HSF1+/+ and HSF1-/- strains at different times (R0, R2, R4).

- **miR-208b**
 - Strain effect: ns
 - Time effect: ns
 - Interaction: p<0.05

- **miR-499**
 - Strain effect: ns
 - Time effect: ns
 - Interaction: p<0.05

The graphs show the relative expression levels with error bars indicating variability.
Figure 6

Myh7
- Relative expression
- Pre R0 R2 R4
- HSF1+/+ HSF1-/-
- Strain effect: p<0.05
- Time effect: p<0.05
- Interaction: ns

Myh7b
- Relative expression
- Pre R0 R2 R4
- HSF1+/+ HSF1-/-
- Strain effect: p<0.05
- Time effect: ns
- Interaction: ns