<table>
<thead>
<tr>
<th>Title</th>
<th>Explicit vs. Implicit Instruction: Investigating Backchannel Behavior in the Japanese EFL Classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cutrone, Pino</td>
</tr>
<tr>
<td>Citation</td>
<td>Asian EFL Journal, 18(2), pp.9-88; 2016</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/37373</td>
</tr>
</tbody>
</table>

This is a preprint of an article submitted for consideration in the Asian EFL Journal e 2016 © Asian EFL Journal.
Explicit vs. Implicit Instruction:
Investigating Backchannel Behavior in the Japanese EFL Classroom

Pino Cutrone
Nagasaki University, Japan

Bio Data
Pino Cutrone has been teaching in Japan for fifteen years and is currently an Associate Professor at Nagasaki University. He received his PhD in Applied Linguistics from the University of Reading and has published widely in his field. His research interests include intercultural pragmatics, sociolinguistics and EFL pedagogy.

Abstract
This study examined the effect of explicit and implicit instruction on Japanese EFL learners’ listening behavior over the course of 16 weeks. 30 university student participants were divided into three groups and given tests at three points in time: at the beginning, at the eight-week mark, and at the 16-week mark of this study. Each of these tests involved participating in an intercultural conversation, completing a questionnaire and being interviewed. In one group, the explanations of rules were given explicitly by a teacher; in the second, implicit instruction evolved mainly from peer group discussions and conversational practice with native English speakers. The third group was a control. The findings demonstrate that both explicit and implicit methods had a positive effect; however, overall, the Explicit group generally outpaced the Implicit group. These findings, thus, provide support for the explicit teaching of listening behavior in the Japanese EFL context.

Keywords: EFL pedagogy in the Japanese context, intercultural pragmatics, explicit versus implicit learning, listenership, backchannel behavior
Introduction

Since English is generally regarded as the lingua franca for communication used in such fields as international politics, academia, business and science, more people around the world are studying EFL/ESL every day. Few nations have expended greater resources encouraging their citizens to study English than Japan, yet the results to date have been largely unsatisfactory (Nikolova, 2008), particularly concerning oral skills (Alun, 2008). A key aspect of effective oral communication is being able to give effective feedback to one’s interlocutor (O’Keeffe, McCarthy & Carter, 2007), and this is a specific area in which the writer contends that Japanese EFL learners (JEFLs hereafter) have experienced problems (Cutrone, 2005). It is becoming increasingly clear that what constitutes effective feedback seems open to interpretation, and there is potential for cross-cultural pragmatic failure and misunderstanding when listening styles differ. In an attempt to inform language pedagogy in the JEFL context, the main aim of this article is to determine how to improve this aspect of JEFLs’ English.

Examining Listening Behavior from a Research Perspective

There exist several terms in the research literature to describe what is meant by listening behavior. For instance, McCarthy (2002, 2003) uses the term “good listenership” to describe the active responses that listeners produce in conversations. Other researchers, as Fujimoto (2007) notes, have used one of the 24 terms on her extensive list to describe various elements of listening behavior. The term, backchannel, coined by Yngve (1970) is perhaps the one linguists seem to associate most often with listening behavior and will, thus, be the focus of the analysis in this paper. Yngve (1970) describes a backchannel as follows:

When two people are engaged in conversation, they generally take turns...In fact, both the person who has the turn and his partner is simultaneously engaged in both speaking and listening. This is because of the existence of what I call the backchannel, over which the person who has the turn receives short messages such as yes and un-huh without relinquishing the turn. (p. 568)

Although some researchers such as Oreström (1983) continue to follow Yngve’s (1970)
original definition, others researchers such as Duncan (1974) and Duncan and Fisk (1977) extend what is meant by the term backchannel to include sentence completions, requests for clarification, brief statements, and non-verbal responses such as head nods and headshakes. In the studies most closely resembling this current project (in terms of research design and in the use of Japanese participants), Cutrone (2005), Maynard (1997) and White (1989) differed slightly in their identification of backchannels. White (1989), focusing solely on non-word vocalizations such as mhm, yeah, uh-huh, oh, and hmm, limited her analysis to audio recording and thus did not include nonverbal behavior. Cutrone (2005) and Maynard (1986, 1987, 1989, 1990, 1997), on the other hand, used a broader identification of backchannels as proposed by Duncan and Fiske (1977) in that they too include sentence completions, requests for clarification, brief statements, and nonverbal items such as head nods and laughing. As the researcher agrees that brief utterances and nonverbal behavior by the listener are indeed backchannels in that they serve as messages to the primary speaker, this broader definition is used to identify backchannels in this current research project.

Listener Backchannels vis-à-vis Speaking Turns

A major issue in identifying a backchannel is determining whether a particular behavior constitutes a backchannel or a separate turn. According to Maynard (1986, p. 1084), much of the confusion may stem from distinguishing between “having a turn” and “having the floor” and can be attributed to self-contradictions in Yngve’s (1970) definition. Yngve’s definition of a backchannel is given in terms of “not relinquishing a turn”; however, he cites the following example as backchannel behavior:

> In one case, what looked like backchannel activity consisted of filling in needed personal background so that the person having the floor could continue. This went on for about thirty seconds and involved a number of sentences. It is interesting to note that this extensive backchannel activity was in turn provided with back-back channel activity of the ‘uh-huh’ variety. (p. 568)

In this quote, Yngve appears to be identifying backchannel behavior on the basis of holding the floor, rather than having the turn. Thus, longer utterances such as *You’re ready to go then* in response to the primary speaker’s talk can cause confusion because this utterance may allow the primary speaker to continue holding the floor, yet it appears to be a speaking
turn in itself. Consequently, what starts as a backchannel can actually end up as a turn, if the primary speaker shows no willingness to continue speaking. To differentiate between backchannels and turns, this study identifies backchannels in the context of Markel’s (1975) turn-taking system, which he describes as follows:

A speaking turn begins when one interlocutor starts solo talking. For every speaking turn there is a concurrent listening turn, which is the behavior of one or more nontalking interlocutors present. (p. 190)

Thus, following the work of Cutrone (2005) and Maynard (1997), the position taken in this study is to identify a brief statement as a backchannel and not a primary turn when it serves only to react to what the primary speaker is saying (i.e., having a listening function) and not to add any new information to the conversation (i.e., having a speaking function). Therefore, brief questions such as *Is that right?* or *Oh really?*, which are formed in terms of requests for clarification, are classified as backchannels. However, a question such as *Why did she do that?* would be identified as a full speaking turn because it serves a speaking function in terms of driving the conversation in a new direction. Further, responses to questions are not regarded as backchannels because, as Ward and Tsukuhara (2000) have pointed out, backchannels are unlike responses to questions in that they are optional and not required. In addition, answers to questions, which are sometimes quite brief and include ellipsis, would also seem to offer new information that pushes the conversation forward constituting a change of primary speakership. Finally, researchers have to make decisions regarding how to deal with pauses and utterances found between turns at talk. Following the aforementioned studies, this study identifies an utterance as a backchannel only when it occurs immediately after the primary speaker stops talking (within one second) and is followed by a substantial pause before the next turn at talk starts (exceeding one second). This decision was made because it was felt that such backchannels are produced in response to the primary speaker’s speech, and they occur before a substantial turn transitional period starts.

Functions of Backchannels

Classifying the functions of backchannels in an organized list is a difficult task for several
reasons. First, as Cutrone (2010) has shown, the overlap between form and function is considerable, and the function that any given backchannel serves is highly dependent on the context of the conversation as well as the listener’s personality. Although researchers have proposed a range of functions, there has been little consensus to date, as there appear to be reliability issues in measuring this aspect of conversation. In many studies, it is not always clear how analysts reach their conclusions concerning backchannel functions, and it appears that many based their findings on conversational analyses focusing on the primary speakers’ interpretations of their interlocutors’ backchannel functions, as shown by how the conversation unfolded. While the post-hoc examination of conversational transcripts may offer important clues as to what went on in the conversation, it does not necessarily take into account what the non-primary speaker meant to convey with their backchannel utterance. Therefore, this study aims to take into account the observed backchannel behavior of the participants, the non-primary speakers’ stated backchannel intentions, and their interlocutors’ perceptions of these backchannels. Classifying the various functions of backchannels, Maynard (1997) has attempted to sum up the previous work in this area by identifying the following six categories: continuer, understanding, agreement, support and empathy, emotive and minor additions. Detailed explanations and hypothetical examples to demonstrate which forms are used to convey each function are described in Cutrone’s (2010) article. In this current study however, what is of particular interest to the researcher is the use of unconventional backchannel behavior by the JEFLs, i.e., forms and functions that do not seem to correspond. As the section on functions below explains, this includes the JEFL tendency to send supportive backchannel forms such as those to allow the speaker to continue, to show understanding, agreement, and/or support and empathy when they do not understand or agree with what their interlocutor is saying.

Why is Backchannel Behavior Important in the Japanese EFL context?

The primary reason backchannel behavior is becoming such an important topic in language learning is that more and more people are becoming acutely aware of the great impact it can have on intercultural communication (IC). As O’Keeffe, Clancy and Adolphs (2011, p. 100) point out, attempts to move between L1 and L2 pragmatic norms can feel like “a minefield
for learners of a language”. Various studies in this area have shown that JEFLs’ listening behavior differs to that of native English speakers (NESs) in many respects (Clancy, Thompson, Suzuki & Tao, 1996; Maynard, 1986, 1987, 1990, 1997; White 1989) and these differences sometimes lead to miscommunication and negative perceptions across cultures (Blanche, 1987; Boxer, 1993; Cutrone, 2005). This section, thus, outlines some of these differences in listening behavior and discusses their potential impact on IC. To this end, this section also serves to provide a general barometer for JEFLs to produce effective listening behavior.

Frequency of Backchannels
Several intercultural analyses (Clancy et al. 1996; Crawford, 2003; Cutrone, 2005; Maynard, 1986, 1990, 1997; White, 1989) have observed JEFLs producing backchannels far more frequently than their NES interlocutors (i.e., Britons, Americans and Australians) in both their L1 and L2 English. As discussed below, such frequent interjections may be taken as a sign of impatience and demand for a quick completion of the statement (Cutrone, 2005; Lebra, 1976; Mizutani, 1982).

Variability of Backchannels
In their intercultural analyses, Maynard (1997) and Cutrone (2005) reported that the JEFLs’ backchannels consisted mainly of non-word vocalizations and headnods, whereas the NESs (American and British respectively) exhibited greater variability in the types of backchannels they sent. That is, the NESs employed a far greater range of content words in their backchannels and were also able to produce far more extended and complex backchannel responses. Lack of variability, as well as repetition, in backchannel form may be interpreted as a sign of boredom and inattention (McCarthy, 2002, 2003; Cutrone, 2005).

Discourse Contexts Attracting Backchannels
A common finding in the studies to date has been that Japanese discourse contexts attracting backchannels varied considerably (in both the L1 and L2 English), while grammatical completion points (i.e., clausal boundaries), especially those coinciding with a
pause, were the single most important discourse contexts for NESs (Cutrone, 2005; Maynard, 1986, 1990, 1997; White, 1989).

Backchannels Creating Simultaneous Speech

A general finding in the research literature is that Japanese people, regardless of whether they are speaking English or Japanese, tend to backchannel more frequently than NESs, and a great portion of these backchannels are produced during the primary speakers’ speech, creating simultaneous speech (Cutrone, 2005; Hayashi, 1988; Maynard, 1997). As Lebra (1976) and Mizutani (1982) have hypothesized, some listeners may take these frequent interjections as a sign of the listener’s impatience and demand for a quick completion of the statement. Hence, in attempt to dig deeper, White (1989) and Cutrone (2005) conducted correlational analyses to find out what effect Japanese people’s frequent backchannels might have on their cross-cultural interlocutors perceptions of them. Reporting quite different results, White (1989) found that the ten Americans perceived more frequent backchannels by their Japanese interlocutors as a positive trait (i.e., showing signs of comprehension, encouragement, and interest and concern), whereas Cutrone (2005) reported that the eight Britons in his intercultural analysis perceived more frequent backchannels by their JEFL interlocutors as interruptions and signs of impatience.

Backchannel Functions

Although research in this subcategory of listenership is scant, there is some evidence beginning to emerge suggesting some key functional differences across cultures. For instance, Blanche (1987) and Cutrone (2005) have provided anecdotal evidence of Japanese people providing unconventional backchannels in English, such as by employing continuer, understanding, agreement, and/or empathy/support type backchannels in situations when they did not understand or disagreed with what their interlocutor was saying at the time. For instance, in the classroom scenario described by Blanche (2005) and Cutrone (2005), NES teachers sometimes misinterpret students’ classrooms responses (such as nods coupled with vocalisations of *yeah* and *uhuh*) as displays of understanding, rather than the mere polite expressions of attending that the students mean to express. When teachers realize much
later on that students have not understood them, they may occasionally feel confused and/or even slightly annoyed by what they perceive to be mixed signals, or in extreme cases, deceptive messages, resulting in the squandering of valuable class time.

In situations outside the classroom where there may be more at stake, these misunderstandings can have dire consequences, as was the case in the Hitachi-Mitsubishi trial (The Japan Times 1983, p. 2). One of the defendants in the case, Mr. Takaya Ishida of Mitsubishi, maintained that he had not agreed with the undercover FBI agents when they told him he had to steal some information/documents. His defense counselor argued that Mr. Ishida’s responses of yeah and uhuh were not to show agreement, but rather to show he was listening and to allow the other person to continue.

Involvement in the Conversation

A great many intercultural analyses comparing the communicative behaviors of Japanese L2 English speakers and NESs have shown that the Japanese L2 English speakers in these studies spoke less than NESs, did not elaborate as much, and were less likely to engage in small talk (Cutrone, 2005; Hill, 1990; Sato, 2008). Undoubtedly, this is potentially a source of misunderstanding in an English conversation as the importance of making small talk, taking the initiative to speak, and elaboration towards making a positive impression have been documented by several sources (Cutrone, 2005; McCarthy, 2002, 2003; McCroskey, 1992; Sato, 2008; Stubbe, 1998).

Explicit and Implicit Learning

Considering the importance of listenership in IC, and the fact that it is largely neglected in EFL pedagogy in Japan (Capper, 2000), the primary aim of this study is to determine how this aspect of pragmatic competence can best be learned in the EFL classroom. The context of instruction underpinning the examination of JEFL’s acquisition of L2 listenership is a central issue in this study and touches upon the more general, and oft-debated, issue of how languages are best learned: explicitly or implicitly (Rose, 2005). The main feature distinguishing these two instructional approaches is the general provision of metapragmatic
information designed to make the target features more salient in the explicit approach. Explicit instruction commonly involves providing students with explicit metapragmatic information about L2 rules through explanations, metacognitive discussions and corrective feedback. Conversely, implicit instruction generally involves presenting learners with prototypical uses of the target language in meaningful contexts with or without input enhancement. The underlying assumption here is that the models of language given to learners should help raise their awareness so that they will be able to induce the rules for appropriate L2 use on their own.

Following the well-known skills’ acquisition theory known as the Adaptive Control of Thought (ACT) theory (Anderson & Lebriere, 1998), supporters of an explicit approach view language learning as progression from declarative/explicit knowledge through proceduralization to final automatization. Conversely, in line with the tenets of Krashen’s (1982) Input Hypothesis theory, proponents of a non-interface position believe that explicit knowledge cannot be converted to implicit knowledge. Drawing on the differences between L1 and L2 acquisition processes, Ellis (2005, 2006a,b) has made attempts to explain the dichotomy between explicit and implicit learning. Cognitively, unlike L1 learners who are thought to acquire language implicitly, L2 learners come to the learning environment with minds already endowed with knowledge and experience of a prior linguistic system (i.e., the L1). This cognitive state seems to act as a constraint and filter in L2 input reception and output generation, two critical processes of SLA. Goldschneider and DeKeyser (2001) and Ellis (2005, 2006a,b) have identified factors that enable features of language to be noticed and hence guide practitioners to what might need explicit instruction. Therefore, explicit knowledge is thought to contribute to implicit learning. According to Ellis (2006a, p. 19), “the linguistic forms that L2 learners fail to adopt and to use routinely thereafter in their L2 processing are those which, whether available as a result of frequency, recency, or context, fall short of intake because of one of the following associative learning factors”: (1) unreliable predictors of outcome, (2) not attended because of low cue salience, (3) not attended because of low functional outcome in the overall interpretation of the message, (4) not attended because they are redundant in the immediate understanding of an utterance,
being overshadowed or blocked by higher salience cues which have previously been selected, and (5) ignored because L1 experience of form→meaning contingencies affects the cues and dimensions that an L2 learner’s language input systems can best distinguish (perceptual learning), and L1 experience of meaning→form contingencies affects the way a L2 learner routinely expresses their meanings in language.

While all five of Ellis’ (2006a) factors listed above have the potential to hinder the acquisition of L2 listenership, factors four and five likely pose the greatest threats. As previous studies have shown (Crawford, 2003; Maynard, 1997; White, 1989), there is a great deal of evidence showing the negative transfer of backchannel behavior from L1 Japanese to L2 English, which suggests the possibility of L1-influenced blocking. As Brozyna (2007) and Takimoto (2009) have pointed out, despite their pervasiveness, conversational discourse features such as backchannels are largely non-salient and often pass unnoticed unless attention is drawn to them intentionally and explicitly. Ellis (2006a,b), thus, advocates explicit and conscious L2 learning as a way of supplementing or directing frequency-driven learning of patterns. Ellis believes that consciousness is required to change behavior in SLA, as L2 learners do not seem to be equipped to notice low-salient cues at a subconscious level, particularly when proficiency levels using the more obvious cues are already sufficient for everyday communicative survival. These beliefs are in line with Schmidt’s (1993) Noticing Hypothesis, which stipulates that learners must consciously notice linguistic input in order for it to become intake.

Can L2 English Listenership Be Learned?

Research has shown that the acquisition of L1 backchannels is a fairly slow developmental process, stretching into adolescence (Hess & Johnston, 1988). As several studies have shown evidence of L1 Japanese to L2 English negative transfer and fossilization where backchannels are concerned (Crawford, 2003; Maynard, 1997; White, 1989), L2 listenership is thought to be an especially difficult skill-set to learn. This seemingly uphill battle may be one of the reasons why it has been rarely taught and/or studied (Thonus, 2007). While evidence showing the benefits of form-focused-instruction (FFI) on various
aspects of SLA such as grammatical development is indeed mounting (Ellis, Rod, 2008),
the effects of FFI on pragmatic development remains unclear. Despite the many calls for
studies examining the teachability of listenership (Cutrone, 2005; O’Keeffe & Adolphs,
2008; McCarthy, 2002, 2003) only a handful of studies in this area have been published to
date, most of which seemed to have been brief and/or focused on other aspects of SLA. For
instance, concerning the latter, Schmidt (1983), in his longitudinal case study reporting on
the English development of a native speaker (NS) of Japanese (whom he called Wes in the
reporting of his study), in an immersion setting, inadvertently noticed a great improvement
in Wes’ listenership after three years abroad, which would seem to provide support for the
implicit learning of this skill-set. Schmidt (1983), however, did not analyze listening
behavior in any systematic way; rather, his inferences seemed to be based mainly on
personal observations and anecdotal evidence.

Ward and Tsukuhara (2000) and Ward, Escalante, Yaffa and Solorio (2007) have
experimented with CALL methods as a means of teaching the timing of backchannels in
English and Arabic respectively. A major issue involving this type of instruction is the
seemingly narrow focus of teaching the appropriate timing of English backchannels without
giving attention to other crucial elements of backchannel behavior such as form, function
and contextual variables. In fact, mastering the skills to produce backchannels at
appropriate times, whether they understand what the primary speaker is saying or not, may
actually reduce learners’ overall L2 communicative ability. That is, there exists evidence of
IC being negatively affected by instances of JEFL speakers producing continuer,
understanding, or agreement type backchannels even when they disagree or did not
understand what the primary speaker was saying (Blanche, 1987; Cutrone, 2005; LoCastro,
1987). A backchannel trainer that focuses solely on timing would, in essence, be helping
learners to fake understanding, which has previously been identified as a potential problem
area that warrants instructional attention to remedy.

In her unpublished Master’s thesis, Brozyna (2007) attempted to assess the
teachability of backchannels in a study that also sought to investigate the effects of
instruction on discourse markers functioning as hedges and fillers. Basing her study on the awareness raising methodology of Illustration-Interaction-Induction (Carter & McCarthy, 1995, 2004) and on the “noticing the gap” (Schmidt & Frota, 1986, p. 311) potential for learning activation, Brozyna compared the performance of a control group (attending regular English classes four hours per week), with two treatment groups receiving an additional two hours of experimental instruction over 12 weeks. One of the experimental groups was given rich exposure to target features as well as explicit instruction in terms of metalinguistic information regarding backchannels and discourse markers, whereas the other experimental group received the same treatment with the addition of opportunities for intensive and focused practice. Brozyna reported a significant improvement in the group that received practice opportunities, but not in the group that did not receive practice opportunities or the control group. Although Brozyna intended this project to be a pilot study for future research, and the practical constraints of her teaching context certainly played a role, there are a number of issues associated with the design as well as findings of her study. First, the six participants in each of the treatment groups consisted of male and female high school students, whereas the four participants in the control group were all adult females, aged 24-26, in full-time employment. The fact that age, gender and socioeconomic status were not controlled makes the results difficult to compare between groups.

Second, the brevity of the method of analysis, which was limited to counting the number of backchannels in one two-minute extract pre instruction and another two-minute extract post instruction, would also seem to bring into question the validity of the results. There would also appear to be some validity concerns involving the fact that these two-minute extracts appear to have involved all six participants conversing at once. Considering the complexities of how group dynamics might influence backchannel behavior, it is easy to imagine how one or two members of a particular group, with potentially divergent and/or altered backchannel behavior, could skew the results of such a small scale study. Moreover, concerning studies that measure the effectiveness of instruction on a particular language
feature, it is difficult to give findings any credence without a delayed post-test to demonstrate whether the treatment had any sustained effects.

Finally, Brozyna appears to have based her evaluation of the efficacy of the instruction solely on the quantity of backchannels used and did not include other important aspects of quality such as form and function. That is, the fact that the group that received full treatment increased the amount of backchannels they uttered from 3 to 12 (or from .012 to .04 / number of primary speaker words) after instruction seems to have provided the foundation for stating that these participants had improved. In the researcher’s opinion, the assessment of backchannel behavior is not as straightforward as this. The relationship between backchannels and discourse is not a linear one; rather, it is complex and multifaceted, with frequency comprising only one of the many interrelated and overlapping components in this skill-set. In the case of JEFLs, whose style of frequent backchannels was found excessive in various intercultural analyses (Cutrone, 2005; LoCastro, 1987), the goal of instruction would be, conversely, to limit the overall frequency of their backchannels (especially the minimal and repetitive ones), while increasing their length and variability at context-specific moments (repair strategies to deal with non-understanding).

Lastly, a study administered by Sardegna and Molle (2010) examined the learnability of English listener responses in five JEFLs after a two-hour video conference lesson. Sardegna and Molle claim that this pedagogic intervention had a positive short-term effect on the production of students’ listener responses; however, it seems difficult to give too much credence to this finding based on the data presented, as well as the brevity of the treatment and analysis. Sardegna and Molle seem to be basing their conclusion solely on the limited amount of data presented in a short post-treatment conversational excerpt involving the five JEFLs and the teacher. Further, besides the problems associated with analyzing all the JEFLs together discussed above, the criteria for assessing listening behavior again appears to be oversimplified as the lone determinant of success was the observation that the JEFLs used fewer backchannel forms common in Japanese and more that are common in English. Finally, technological limitations associated with the video
conferencing set-up forced the researchers to exclude nonverbal backchannels in their analyses.

Research Questions (RQs)
While there is evidence to suggest that pedagogical intervention can facilitate some elements of pragmatic development (Rose, 2005), little is known about how learners acquire L2 listener responses over time, as well as what effect different types of instruction might have on development in this area. RQ 1, thus, seeks to answer the more general question of whether pedagogical intervention addressing conversational discourse features of language can have a positive effect, while RQ 2, more specifically, seeks to shed light on the Explicit-Implicit debate where listener responses are concerned.

RQ 1: Will instructional treatment help facilitate the JEFL learners’ backchannel behavior?

RQ 2: If so, will explicit treatments be more effective than implicit ones (a) in the short term and (b) in the long term?

Methodology

Participants
Constituting an opportunistic sample, this study involved 46 participants known to the researcher. First, in the intercultural conversation phase, this study used 30 JEFLs born and raised in Japan (24 females and six males) and six L1 American English speakers from the United States (three females and three males). All conversational participants lived in Nagasaki Prefecture in Japan and were university students ranging in age from 18-20 at the time of the study. The Americans participating in the conversations (called the NES interlocutors in this study) of the study were visiting Japan as exchange students. In addition, ten American participants (called NES observers in this study) who did not participate in the conversations and/or have any particular affiliation to Japan were used to provide unbiased assessments of the JEFLs in the conversations (i.e., see Procedural Step 6 below). The NES observers ranged in age from 22-48 and were from various parts of the
United States. Participating of their free will and understanding the nature of the study, all 46 participants read and signed a Participation Consent Form and were given explicit instructions regarding this study and their role in it. All forms were typed in English with Japanese translations provided to the native Japanese speakers in this study to ensure these participants had a full understanding of the contents in each form. In referring to participants in this study, pseudonyms have been given to protect participants’ privacy.

Procedures in Collecting Data

As the RQs were complex and multifaceted in nature, it was thought that using a mixed-methods approach would not only serve to strengthen the reliability and validity of the data but also provide for a broader view with multiple perspectives of the researched topic. To this end, the following methods were used to collect data in this study: observations, questionnaires and interviews.

Observations

The observation phase involved the video recording of 30 intercultural dyadic conversations in English between JEFL and NES participants. To control for sociolinguistic variables, all dyads were paired according to gender, age (within two years) and social status (i.e., all university students), and participants were not well-acquainted prior to each conversation. The conversations took place in the researcher’s office in Nagasaki Prefecture, Japan, and, once brief instructions were given, only the participants were present in the room. Initial conversational prompts (i.e., involving peer-mentoring) were offered to help stimulate conversation; however, it was made clear to participants that they were free to talk about anything they liked. Each conversation was video recorded for a period of thirty minutes, of which only the middle three minutes of each conversation were included as data to be transcribed (see Appendix A for sample transcription). It was thought that the participants would become less conscious of the camera as the conversation progressed, and that the middle part of the conversation would be the most natural as it avoids the awkwardness which often occurs at the beginning and end of conversations between people who do not know each other well. Further, as discussed below, one of the
purposes of the interviews was to examine the extent to which the conversational participants might have changed their behavior due to the presence of the video camera in the room (known as Observer’s Paradox). Consistent with similar studies (Cutrone, 2005; Maynard, 1986) that have involved video recorded conversations, Observer’s Paradox did not seem to be a major issue in this study. Only three of the participants reported to being aware of the video camera initially, as they looked towards the camera and made metamessage comments such as we can begin now and I shouldn’t say that in front of the camera; however, they, along with the rest of the participants, indicated that they were not conscious of the camera at all once the conversation developed and felt that it did not influence their behavior in any way.

Lastly, to strengthen the internal reliability of the transcriptions, the researcher analyzed the video recorded conversation with the assistance of a colleague. The colleague, who was trained by the researcher to recognize the transcription conventions used in this study (outlined in Appendix A), which were adopted from the pioneering Conversation Analysis (CA) research of Sacks, Schegloff and Jefferson (1974), and the revised CA conventions of Jefferson (2002), assisted in two ways: first, regarding some of the words and/or gestures that were not clear to the researcher in the conversations, the researcher sought out the colleague’s opinions so as to make a more informed choice in transcribing the word(s) or behavior in question; second, the colleague double-checked the researcher’s initial transcriptions to ensure that the conventions showing the features of language were accurately presented in the transcriptions. The conversations were conducted in the researcher’s office. Video recording equipment consisted of a Sony digital video camera, which was placed unobtrusively in the corner of the room. At the time of the video recording, only the participants were present in the room when the conversation was taking place.

Questionnaires

There were three types of questionnaires used in this study. The first two, inventories to measure WTC (McCroskey, 1992; see Appendix B) and the Extraversion dimension of
personality (Oshio, Abe & Cutrone, 2012; see Appendix C), were used to create equally balanced groups prior to assessment in this study (as Procedural Step 2 below explains). The third type of questionnaire, Hecht’s (1978) conversational satisfaction inventory, was used more extensively throughout the study as part of the assessment of the JEFLs’ performance. To this end, slightly modified versions of Hecht’s questionnaire were given to the participant groups of this study, as shown in Appendix D (i.e., the NES and JEFL conversational participants and the NES observers). Questionnaires for the conversational participants consisted of a fifteen-item inventory and one open-response question at the end in case the participant wanted to add something that had not been addressed in the other questions. The questions on the fifteen-item inventory were closed-ended, consisting of statements on a Likert-scale ranging from one to seven. The researcher modified the questionnaire from Hecht’s (1978) original and the one White (1989) used because pilot studies revealed that some vocabulary and some of the statements, which contained double negatives, confused participants. For instance, participants of the pilot study had problems rating yes or no on the Likert-scale because of negatively worded statements such as He/she didn’t seem to care and He/she did not interrupt me. Consequently, the negatively worded statement He/she didn’t seem to care was excluded from the questionnaire because its positive counterpart He expressed a lot of interest in what I had to say already existed in the questionnaire, and similarly, the negatively worded statement He/she did not interrupt me was replaced with the positive statement He/she interrupted me. Moreover, item 15 My conversation partner seems to want to avoid speaking was added to Hecht’s (1978) original questionnaire. The JEFL participants’ questionnaires included Japanese translations underneath each of the items typed in English to ensure comprehension.

Other modifications were made specific to the questionnaire objectives for each of the two groups. For instance, item 2 on Hecht’s (1978) original questionnaire I felt I was able to present myself favorably during the conversation was altered for both groups. On the JEFL participants’ questionnaire, the adverb favorably was changed to fairly as the focus here was to determine whether these participants felt that they represented themselves
adequately, sincerely, and as they had intended (i.e., this need not necessarily be favorably). To avoid confusion, this was emphasized in the Japanese translation. On the NESs’ questionnaire, the original item 2 was changed in its entirety to *The feelings that my partner expressed by means of listening feedback during the conversation seemed authentic and sincere*. The focus here was to examine whether the NESs could sense their JEFL interlocutor faking understanding and/or agreement. The post-conversation questionnaires were given to each participant in the dyad directly after their video recorded conversation and simultaneously completed in separate rooms.

Subsequently, a slightly modified version of Hecht’s questionnaire was given to a group of American observers to assess their perceptions of the JEFLs’ performances from watching the video recorded conversations. First, since the members of the NES observer group did not participate in the conversations, referent nouns, subject pronouns, object pronouns and possessive adjectives were changed accordingly. Second, NES observers’ questionnaires included two supplemental items (items 16 and 17) on the Likert-scale designed to examine specific areas of relevance to the study of JEFLs’ backchannel behavior that were not covered in the original questionnaire. These consisted of item 16 *When the Japanese person did not understand something, they were able to clearly convey this to their conversational partner with their listening feedback* and item 17 *The Japanese person’s listening behavior seemed inadequate in some ways*. For participants expressing disagreement (i.e., 5, 6, or 7 on the Likert-scale) to item 17, an open-item response was subsequently solicited asking them to explain their answer.

Interviews
The interviews involved the two members of each dyad being interviewed separately and in succession, with the NES first and the JEFL second. No one else was present at the time of the interview, as the researcher asked the participant not being interviewed to wait in another room while the interview was being conducted. None of the interviews took longer than twenty minutes. The interviews consisted of the researcher playing back a portion of the video recorded conversation and asking each participant a few questions pertaining to
the listening behavior displayed in the conversation. The researcher took field notes and audio recorded all interviews to refer to in the data analysis. The interviews were semi-structured in that the researcher had a general plan but did not enter with a predetermined set of questions, as some of the questions were guided by the circumstances in the video recorded conversations and the responses of the interviewee. In an effort to help participants feel more comfortable, questions were sequenced to begin with general inquiries and gradually move towards more specific and potentially sensitive questions. As mentioned above, the interviewer began by assessing the extent to which the conversational participants might have been affected by Observer’s Paradox.

The primary aim in the interviews with the American participants was to learn how they perceived their Japanese interlocutors’ backchannel behavior. A major part of the interview involved the playing back the video recording and asking the American interviewee to comment on the listening behavior of their Japanese interlocutor. In instances singled out for analysis (where some of the JEFLs’ backchannels occur), the researcher stopped the video recording and asked specific questions such as *What function do you think that head nod serves?*, *Do you think s/he understands what you are saying here?*, and follow up questions such as *Why do you think so?* The researcher made a note of any data which I thought might be useful in the subsequent interview with the Japanese participant of the dyad.

Subsequently interviewing the Japanese participant, the researcher had two main objectives: to gain insights into why JEFLs use backchannels the way they do and to determine if there were any misunderstandings or miscommunications caused by their use of backchannels in the video recorded conversations. Regarding the latter, this involved the interviewer asking the JEFLs to comment on what they were feeling at certain points in the conversation, as well as the intended functions of their backchannel responses. In particular, the researcher investigated what the JEFLs were doing when they did not understand and if they were indeed feigning understanding as various researchers claim is common for Japanese backchannel behavior. In the successive interviews, the researcher documented
any notable differences between the Japanese participants’ backchannel intentions and their NES interlocutors’ perceptions on a data record sheet (see Appendix E). In the cases where the JEFL’s backchannel explanation differed greatly from their NES interlocutor’s interpretation, the interviewer asked the JEFL potentially sensitive follow-up questions such as Why did you nod if you did not understand what he/she was saying here? and Why did you say yeah if you disagreed with what he/she was saying? In cases where the interviewee seemed uncomfortable in answering, the interviewer did not persist with this line of questioning and instead shifted to a less sensitive area.

Procedural Steps

Step 1: Pre-test

Each JEFL received one pre-test which contained three parts: observations, questionnaires and interviews (as described above in the Procedures of Collecting Data section). The first part, observations, refers to the JEFLs participating in a conversation with a NES (which was video recorded and subsequently watched, transcribed and assessed). The second part refers to a conversational satisfaction questionnaire filled out by both JEFLs and their NES interlocutors. The third part refers to retrospective interviews with both JEFLs and their NES interlocutors regarding their intercultural conversations.

Step 2: Group Formation

The 30 JEFLs in this study were divided into three groups of ten (see member characteristics of each group in Appendix F). These groups comprised the two experimental groups (Groups A and B) and one control group (Group Z). The main objective in grouping the participants was to attempt to create comparable and thus equally balanced groups in terms of gender, EFL proficiency as based on the Test of English for International Communication (TOEIC) scores, WTC (see McCroskey, 1992), personality (i.e. based on the Extraversion dimension, see Oshio, Abe & Cutrone, 2012) and age.

Step 3: Treatment

Group A: Receiving Explicit Instruction
Members of Group A received explicit instruction over the course of two months, i.e., one 90-minute lesson a week for eight weeks. This began with a focus of explicitly and consciously raising learners’ awareness of the use and dimensions of listener responses in English as compared to Japanese. The following teaching methods were used in the classroom: (1) the form, function and perception of listener responses, as well as other communicative behavior thought to be relevant, were compared across languages and cultures, (2) with input enhancement from the teacher, members of Group A closely examined intracultural and intercultural conversations and subsequently discussed how differences in form, frequency, placement and function of backchannels in varying contexts affect IC, (3) learners were provided with overt descriptions and concrete examples of how NESs employ backchannels and conversational micro-skills in varying contexts, (4) the JEFLs in Group A completed exercises and tasks to reinforce the newly learned conventions of backchannel behavior, and, (5) with a focus on fluency, learners practiced using listener responses in role-plays. By video recording role-play performances and watching them afterwards, students were able to analyze their performances and receive feedback from the teacher and other students.

Group B: Receiving Implicit Instruction

Members of Group B received implicit instruction over the course of two months. While the overall amount of instruction (and the eight-week time-line) was identical to that received by Group A, the lesson parameters were altered. The lessons involving classroom interaction and discussion amongst peers, which took place in Weeks 1, 4 and 8, were each administered in one 90-minute sitting; however, the sessions in which the JEFLs conversed with a NES, which occurred in Weeks 2, 3, 5, 6 and 7, took place twice a week and were 45 minutes in duration each. Similar to the aims of the explicit instruction above, raising learners’ consciousness regarding the use and dimensions of listener responses across cultures was among the main goals of implicit instruction in this study; however, different methods were used to achieve this. Unlike the instruction Group A received, learners in Group B were not given any explicit metapragmatic information about listener responses through explanations and concrete examples. While the members of Group B were asked
initially to consider the general qualities belonging to good conversationalists and listeners alike, they were not instructed to focus on listening behavior as part of this treatment. The teacher’s role was limited to that of facilitator in that the JEFLs in Group B were required to induce rules and meaning on their own based on exposure to prototypical uses of the target language in meaningful contexts. Members of Group B received the following pedagogical interventions. First, learners were provided with models of conversations in three categories: (1) NS-NS discourse in Japanese, (2) NS-NS discourse in English and (3) NES-JEFL conversations in English. Second, with limited input enhancement from the teacher, the JEFLs in Group B were asked to reflect upon and discuss their observations of communicative behavior across languages and cultures in journal-writing entries and small group discussions. Third, making up the greater part of the treatment Group B received, learners were given the opportunity to communicate with NESs face-to-face in authentic contexts on 12 separate occasions. Each conversational session was followed by a brief period of reflection in which the JEFLs in Group B recorded their thoughts in their journals. In addition, after every three conversational sessions, learner-led group discussions took place, affording them the opportunities to further reflect and share their general observations regarding their own as well as their cross-cultural interlocutor’s communicative style(s), what they might have learned, and what they hope to change or modify about their own behavior in future conversations in English.

Group Z: No Treatment

The JEFLs in the control group received no formal treatment regarding listenership.

Step 4: Post-test 1

Post-test 1 was given to all JEFLs within three days of their last treatment, and followed the same procedure as the Pre-test outlined in Step 1 above.

Step 5: Post-test 2

To assess whether the treatment had any sustained effects, a delayed post-test was given. Applying identical procedures as those used in the Pre-test and Post-test 1, Post-test 2 was
administered approximately eight weeks after Post-test 1.

Step 6: NESs’ Observations

Ten NES observers were instructed to watch each three-minute video recorded conversation and subsequently provide their impression as to the adequacy of each JEFL’s conversational performance by completing a modified version of Hecht’s (1978) conversational satisfaction questionnaire.

Data Analysis and Assessment Criteria

As mentioned above, three data collection methods were used in this study: observations, questionnaires and interviews. The data produced by these methods combine to inform judgements within the following assessment categories of backchannel behavior: the approximation of NES backchannel behavior, Willingness to Communicate (WTC), the ability to use conversational micro-skills and repair strategies, and Intercultural Communicative Competence (ICC). This section, thus, presents the methods of data analysis in each of these assessment categories.

Inferential statistics were included at various points to determine the probability that an observed difference between means (such as the means involving the same group at two points in time, as from the Pre-test to Post-test 2) was a significant one or one that might have happened by chance. Both parametric and non-parametric statistical tests were used depending on the type of data analysed. Regarding the observational data (i.e., measuring the approximation of NES backchannel behavior) and the WTC questionnaires, Paired-Samples t-tests were used because the data in these areas fulfilled the following four requirements of parametric testing:

1. The pairs of scores must be related to each other.
2. The scores must be of at least interval status.
3. The scores in each group must be normally distributed.
4. The two sets of scores have equal variances. (Clegg, 1982, p. 167)

Conversely, concerning the data collected from the NES observers’ questionnaires, the non-
parametric Wilcoxon Signed Rank test was used because these data were not drawn from a normal distribution (as shown by an exploratory data analysis that included Q-Q plot graphs, a normal curve superimposed over histograms of the data and the Shapiro-Wilk normality test). To analyse the data in this study, the Statistical Package for the Social Sciences (SPSS), version 14.0, was used. In all inferential statistical tests used in this study, two-tailed tests were used, and alpha levels (\(\alpha \)) were set at 0.05 (\(p<.05 \) is marked by a single asterisk *). Since the groups in this study were small, probability statistics have to be viewed with caution. Hence, considering the possibility of Type 1 errors (i.e., the false rejection of the null hypothesis) occurring, probabilities less than the more stringent 0.01 level were also emphasized (\(p<.01 \) level =**).

The Approximation of NES Backchannel Behavior

To determine how well the JEFLs were able to approximate NES norms (as presented in Cutrone, 2010), the researcher carefully analyzed the JEFLs’ performances in the intercultural conversations. As mentioned above, all of these conversations were transcribed and, thence, formed the observation part of the tests in this study (sample transcription shown in Appendix A). To analyze the data of the observation phase of this study, the transcriptions were closely examined for patterns and tendencies as well as how frequently certain behaviors occurred in the data.

Frequency

Following the precise definitions of backchannels given above, the researcher determined the frequency of backchannels produced by a person or group in this study by counting the number of backchannels in the conversational transcripts. Further, to provide a more accurate representation of how frequently participants sent backchannels according to the opportunities they were given (i.e., how much the other conversational participant spoke), the number of a participant’s backchannels was divided by the number of their interlocutor’s words.
Variability
Similar to the overall Frequency category above, the frequency of various subtypes of backchannels is based on how frequently the subtype occurred in the data of the transcripts. While numerous verbal and nonverbal backchannel subtypes have been explored, this paper presents only the findings of the superordinate groups, minimal vis-à-vis extended backchannels, because they are thought to have the greatest influence on IC (see Cutrone, 2011; Stubbe, 1998). Minimal responses can be defined here as any brief (non-lexical) and/or nonverbal backchannel occurring in isolation, which include headnods and/or non-word vocalizations such as *uhuh* and *mhmm*, whereas extended responses, conversely, refer to the lengthier verbal listener feedback consisting of multiple and varied words found in sentences (irrespective of nonverbal backchannel accompaniment) such as *How great that is* or *Do you think so?*

Discourse Contexts Favoring Backchannels
Upon exploring several subcategories, the primary discourse context favoring backchannels in English has consistently proven to be the final clausal boundary (see Cutrone, 2005; Maynard, 1997; White, 1989). In simple terms, a final clause boundary refers to the points in the primary speaker’s speech where a clause (i.e., containing a subject and predicate) is completed. It is important to note, however, the distinction between a final clause boundary and an internal clause boundary. A final clause boundary is one that makes complete sense (i.e., fully meaningful) and could end the utterance there, whereas an internal clause is one in which the meaning is not complete, and there is a requirement for the utterance to go on in order for the meaning to be complete. As shown in Appendix A, two slashes side by side (//) mark the points at which final clause boundaries occur in the primary speakers’ speech. Since backchannels in the transcripts are presented in italics below the primary speakers’ talk at the point they occurred in the talk, the backchannels that occurred at final clause boundaries in the primary speaker’s speech were clearly discernible. In the findings, the two main categories relating to this area that will be presented are as follows: (1) the mean percentage of opportunities (Opps) that final clause boundaries attracted
backchannels (with SDs), and (2) the mean percentage of backchannels constituted by final clause boundaries (with SDs).

Simultaneous Speech

Since Simultaneous Speech Backchannels (SSBs) have the danger of being misconstrued as interruptions (Cutrone, 2011), this paper includes a separate category for them. SSBs are recorded when a backchannel is uttered during the primary speaker’s speech, and, hence, backchannels which occur during pause periods in the primary speaker’s speech are not considered SSBs. SSBs include laughter; however, as SSB laughter is not thought to influence communication negatively (i.e., it was doubtful that SSB laughter would be seen as interruptive), this study limits its reporting in this area to the non-laughter SSB category.

Increase Willingness to Communicate (WTC)

The examination of participants’ WTC is based on two main sources: McCroskey’s (1992) self-report WTC questionnaires and behavioral observations. Regarding the former, analyzing JEFL scores in the interpersonal communication sub-category of McCroskey’s (1992) WTC inventory (see Appendix B) offers a sense of how willing the JEFLs were to communicate. To determine if the WTC self-ratings were borne out in the conversational data, the amount that each person spoke (i.e., in terms of how many words they uttered in the transcriptions) was also included in this analysis. Lastly, since the importance of asking questions has been widely stated, the researcher included this as another area for analysis.

The Development of Conversational Micro-skills and Repair Strategies

Analysis of this category was delimited to situations when JEFLs did not understand or agree with their interlocutor. In addition to documenting the number of times JEFLs use potentially unconventional and/or inappropriate backchannels in these situations, this analysis also examines the instances in which they use conversational repair strategies. Conversational repair strategies are divided into two types of listener response: minimal and extended responses. Minimal responses refer to any brief (non-lexical) backchannel considered to be a request for clarification and/or a demonstration of non-understanding.
The intent of such backchannels was judged in two ways: by asking the participants in the playback interviews what they meant to convey with their backchannel response, and by examining the intonation patterns of minimal backchannels. Concerning the latter method, backchannel repetitions with a rising intonation commonly serve to request clarification; thus, using the well-known Phonetics software called Praat (Version 5.0.18), minimal backchannels with pitch contours containing rapid rises of 600 Hertz or more were marked as conversational repair strategies (i.e., requests for clarification). Extended responses refer to a specific set of typical conversational phrases and routines such as *I beg your pardon* or *what does that mean?* As a basis for identifying expressions that make up these repair strategies, this study recognizes text strings that correspond to and are similar to the models set forth in two language teacher’s resource books that have been entirely based on these structures: *Function in English* (Blundell, Higgens & Middlemiss, 1982) and *Conversation and Dialogues in Action* (Dörnyei & Thurrell, 1992).

The Development of Intercultural Communicative Competence (ICC)

A basic requirement of ICC is for conversational participants to be seen as competent by members of the target culture (Byram, 1997, Spitzberg, 2000). To assess this in this study, the NES interlocutors (i.e., conversational participants) were given post-conversation questionnaires and interviews (as described above). Further, the NES observer group completed a modified version of Hecht’s (1978) Interpersonal Communication Satisfaction Inventory (see third questionnaire in Appendix D). Since the NES observers were based abroad, did not participate in the conversations and did not have any affiliation to Japan (and were, thus, unbiased and offered perceptions that were potentially closer to what JEFLs would encounter abroad), the researcher examined their questionnaire responses in greater detail.

Results

The results of the JEFL groups’ performances at each of the three points of measurement (i.e., the Pre-test, Post-test 1 and Post-test 2) are presented quantitatively according to each group (in the tables below) and collectively (in the figures below) in the following areas of
backchannel behavior: frequency, involvement in the conversation, variability, discourse contexts favoring backchannels, simultaneous speech backchannels, and perceptions of NES observers. In addition, the interview data, which are presented both quantitatively and qualitatively, report on how members of each group dealt with situations of non-understanding and how they perceived their improvements or lack thereof throughout this study.

Frequency

Tables 1, 2 and 3 report the backchannel frequencies of Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study.

Table 1 Group A’s backchannel frequencies

<table>
<thead>
<tr>
<th>N = 10</th>
<th>Total Backchannels</th>
<th>Interlocutor’s Words</th>
<th>Average number of interlocutor’s words between backchannels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post 1</td>
<td>Post 2</td>
</tr>
<tr>
<td>Total</td>
<td>450</td>
<td>290</td>
<td>371</td>
</tr>
<tr>
<td>Mean (x̄)</td>
<td>45</td>
<td>29</td>
<td>37.1</td>
</tr>
<tr>
<td>SD</td>
<td>15.23</td>
<td>11.12</td>
<td>12.33</td>
</tr>
</tbody>
</table>

(\(x\) difference of Pre-test \(\rightarrow\) Post-test 1, and Pre-test \(\rightarrow\) Post-test 2 significant at p<.05 level = *; significant at p<.01 level =**)
Examining the three groups’ data collectively, Figure 1 shows that members of the experimental groups (Groups A and B) sent backchannels (BCs) much less frequently in Post-test 1 compared to the Pre-test. Subsequently, in Post-test 2, the number of backchannels the experimental groups sent returned to a level closer to their original Pre-test level. In comparison, the Control group (Group Z) only showed a slight decrease in the number of backchannels they sent from the Pre-test to Post-test 1. From the Pre-test to Post-test 1, the 3.91 backchannel per interlocutor word decrease shown by the Explicit group was found to be strongly significant ($p<.001$), and the 1.95 decrease for the Implicit group was significant at the .05 level ($p<.046$). Further, while all three groups had reverted back to providing more frequent backchannels in Post-test 2, there was some variability between the frequencies in each group. For example, the Control group sent backchannels only slightly less frequently in the Pre-test than in Post-test 2 (i.e., a difference of only .64
backchannels per interlocutor word), whereas the Implicit group sent backchannels noticeably less frequently in the Pre-test than Post-test 2 (difference of 1.14 backchannels per interlocutor word). The Explicit group, however, was the only one to maintain statistically significant changes ($p<.001$) in frequency from the Pre-test to Post-test 2 (difference of 2.67 backchannels per interlocutor word).

![Figure 1 Backchannel frequencies of the three groups over time](image)

Willingness to Communicate

As mentioned above, the JEFLs’ willingness to communicate takes into account their WTC scores, how much they spoke in the conversations and the number of questions they asked their interlocutor. Tables 4, 5 and 6 present the results of these features of conversations for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study.

Table 4 Group A’s willingness to communicate

<table>
<thead>
<tr>
<th></th>
<th>WTC</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{x}</td>
<td>SD</td>
<td>Total</td>
<td>\bar{x}</td>
<td>SD</td>
</tr>
<tr>
<td>N = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Group B’s willingness to communicate

<table>
<thead>
<tr>
<th></th>
<th>WTC</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x})</td>
<td>SD</td>
<td>Total</td>
<td>(\bar{x})</td>
<td>SD</td>
<td>Total</td>
<td>(\bar{x})</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>50.4</td>
<td>8.14</td>
<td>650</td>
<td>65</td>
<td>32.33</td>
<td>12</td>
<td>1.2</td>
<td>.63</td>
<td></td>
</tr>
<tr>
<td>Post 1</td>
<td>60.6**</td>
<td>6.08</td>
<td>901</td>
<td>90.1</td>
<td>31.19</td>
<td>16</td>
<td>1.6</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Post 2</td>
<td>56.6*</td>
<td>8.21</td>
<td>705</td>
<td>70.5</td>
<td>23.01</td>
<td>11</td>
<td>1.1</td>
<td>1.29</td>
<td></td>
</tr>
</tbody>
</table>

\(\bar{x}\) difference of Pre-test \(\rightarrow\) Post-test 1, and Pre-test \(\rightarrow\) Post-test 2 significant at p<.05 level = *; significant at p<.01 level =**

Table 6 Group Z’s willingness to communicate

| | WTC | | | | | | | |
|-------|-----|----------|---------|----------|---------|----------|---------|
| | \(\bar{x}\) | SD | Total | \(\bar{x}\) | SD | Total | \(\bar{x}\) | SD |
| Pre | 56.2 | 7.27 | 640 | 64 | 32 | 18 | 1.8 | .92 |
| Post 1| 57.3 | 7.42 | 963 | 96.3 | 30.63 | 14 | 1.4 | .84 |
| Post 2| 58.5 | 7.37 | 641 | 64.1 | 33 | 9 | .9* | .74 |

\(\bar{x}\) difference of Pre-test \(\rightarrow\) Post-test 1, and Pre-test \(\rightarrow\) Post-test 2 significant at p<.05 level = *; significant at p<.01 level =**

Presenting the three groups’ data collectively, WTC scores, number of words and
number of questions asked at the three tests are compared in Figures 2, 3 and 4 respectively. First, as Figure 2 demonstrates, the Explicit group showed the greatest increase in average WTC score from the Pre-test to Post-test 1 (+21.6), as well as the greatest sustained increase from the Pre-test to Post-test 2 (+9.3). These increases were both found to be strongly significant (at the .01 level). The path of the Implicit group generally mirrored that of the Explicit group but without the same range in scores. The 10.2 increase in this group’s average WTC score from the Pre-test to Post-test 1 was found to be strongly significant (at the .01 level), and the 6.2 increase from the Pre-test to Post-test 2 was significant at the .05 level or below. For the Control group, the average WTC scores remained fairly constant over time, only showing minor increases of 1.1 and 2.3 from the Pre-test to Post-tests 1 and 2 respectively.

As Figure 3 illustrates, the three groups followed a similar path in terms of word output. Similar to the frequency category (see Figure 1), the general trend, regardless of which group they belonged to, was for the JEFLs to speak much more frequently in Post-test 1 compared to the Pre-test and then, in Post-test 2, revert to a level closer to their
original Pre-test level. The mean increase exhibited by the Explicit group (39 words) was the only one found to be statistically significant from the Pre-test to Post-test 1 ($p<.007$); however, the large differences for the Implicit (25.1) and Control groups (32.3) were also noticeable.

![Figure 3 Number of words of the three groups over time](image)

As shown in Figure 4, the path that each group followed in terms of the average number of questions posed was different. The Explicit group displayed the greatest initial increase in questions from the Pre-test to Post-test 1 (+1.3), as well as a sustained increase from the Pre-test to Post-test 2 (+.8). Paired-samples t-tests found both of these increases to be statistically significant ($p<.001$ from Pre-test to Post-test 1, and $p<.011$ from Pre-test to Post-test 2). In comparison, the Implicit group showed only a modest initial increase from the Pre-test to Post-test 1 (+.4), and ultimately a slight decrease overall from the Pre-test to Post-test 2 (-.1). The Control group was the only group to decrease in both measurements after the Pre-test, i.e., (-.4) from the Pre-test to Post-test 1 and (-.9) from the Pre-test to Post-test 2. The latter decrease was found to be statistically significant at the .05 level or below.
Variability

As discussed above, numerous verbal and nonverbal backchannel subtypes have been explored; however, this paper presents only the findings of the superordinate groups, minimal and extended backchannels, because they are thought to have the greatest influence on IC. Tables 7, 8 and 9 report the results of these features of conversations for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study.

Table 7 Group A’s use of minimal versus extended backchannels over time

<table>
<thead>
<tr>
<th>N = 10</th>
<th>Pre-test</th>
<th>Post-test 1</th>
<th>Post-test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>% of Total BCs</td>
<td>% of Total BCs</td>
<td>% of Total BCs</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
</tr>
<tr>
<td>Type of Backchannel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal</td>
<td>372</td>
<td>82.1</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Figure 4 Number of questions of the three groups over time
Table 8 Group B’s use of minimal versus extended backchannels over time

Type of Backchannel	Pre-test			Post-test 1			Post-test 2		
	Total	% of Total BCs	SD	Total	% of Total BCs	SD	Total	% of Total BCs	SD
Minimal Response	302	79.7	10.87	157	59.1**	9.09	269	66.9*	12.87
				(p<.001)				(p<.022)	
Extended Response	23	7.1	4.43	47	17.1**	7.23	51	14.5*	10.01
				(p<.001)				(p<.015)	

(x difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 9 Group Z’s use of minimal versus extended backchannels over time

Type of Backchannel	Pre-test			Post-test 1			Post-test 2		
	Total	% of Total BCs	SD	Total	% of Total BCs	SD	Total	% of Total BCs	SD
Minimal Response	321	74.4	11.3	241	75.5	10.79	398	82.4	5.6
Extended Response	48	11.2	6.55	27	10.8	5.41	36	7.4*	3.31
								(p<.04)	

(x difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)
In terms of the frequency by which minimal and extended backchannel types were used in this study, Figures 5 and 6 demonstrate respectively the differences between three groups. As seen in Figure 5, both the Explicit and Implicit groups showed a substantial decrease in their mean percentage of backchannels constituted by minimal backchannels from the Pre-test to Post-tests 1 and 2. The Explicit group decreased by 20% from the Pre-test to Post-test 1 and by 21.7% from the Pre-test to Post-test 2, while the Implicit Group decreased by 20.06% from the Pre-test to Post-test 1 and by 12.8% from the Pre-test to Post-test 2. Paired-samples t-tests showed that the differences between the means of the Pre-test and Post-test 1 were strongly significant for both experimental groups: the Explicit group ($p<.003$) and Implicit group ($p<.001$). The differences between the means of the Pre-test and Post-test 2 were also found to be statistically significant for both experimental groups; however, the difference for the Explicit group, at the .01 level, was again strongly significant ($p<.002$), whereas the difference for the Implicit group was significant at the .05 level ($p<.022$). In stark contrast, the Control group increased in the mean percentage of total backchannels constituted by minimal responses from the Pre-test to Post-test 1 (+1.1%) and the Pre-test to Post-test 2 (+8%); however, these increases were not statistically significant.

![Figure 5 Proportions of minimal backchannels of the three groups over time](image_url)
As Figure 6 reports, the Explicit and Implicit groups exhibited a considerable increase in the mean percentage of backchannels constituted by extended responses from the Pre-test to Post-tests 1 and 2. The mean percentage of the Explicit Group increased by 11% from the Pre-test to Post-test 1 and by 16% from the Pre-test to Post-test 2, whereas the Implicit Group increased by 10% from the Pre-test to Post-test 1 and by 7.4% from the Pre-test to Post-test 2. Paired-samples t-tests showed that the differences between the means of the Pre-test and Post-test 1 were strongly significant for the Explicit group ($p<.009$) and Implicit group ($p<.001$), and, once again, the difference was strongly significant for the Explicit group from the Pre-test to Post-test 2 ($p<.004$), while it was significant at the .05 level for the Implicit group ($p<.015$). Contrasting the path of the experimental groups, the Control group exhibited decreases in the mean percentage of backchannels constituted by extended responses from the Pre-test to Post-test 1 (-.4%) and the Pre-test to Post-test 2 (-3.8%). The latter of which was statistically significant at the .05 level ($p<.04$).

![Figure 6 Proportions of extended backchannels of three groups over time](image)

Discourse Contexts Favoring Backchannels

As the primary discourse context attracting backchannel is the final clausal boundary, the
results in this section focus on the following areas: the mean percentages of final clause boundaries (CBs) eliciting backchannels (BCs), and the mean percentages of total backchannels constituted by backchannels occurring at final clause boundaries. Accordingly, Tables 10, 11 and 12 present the results of these features of conversations for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study.

Table 10 Group A’s backchannels at final clausal boundaries over time

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>Pre-test</th>
<th>Post-test 1</th>
<th>Post-test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x̄ % of Opps (SD)</td>
<td>x̄ % of BCs (SD)</td>
<td>x̄ % of Opps (SD)</td>
</tr>
<tr>
<td>Final Clausal Boundaries</td>
<td>57.8 (17.78)</td>
<td>52.68 (9.15)</td>
<td>45.8* (17.73)</td>
<td>66.27* (20)</td>
</tr>
</tbody>
</table>

(x difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 11 Group B’s backchannels at final clausal boundaries over time

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>Pre-test</th>
<th>Post-test 1</th>
<th>Post-test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x̄ % of Opps (SD)</td>
<td>x̄ % of BCs (SD)</td>
<td>x̄ % of Opps (SD)</td>
</tr>
<tr>
<td>Final Clausal Boundaries</td>
<td>62.1 (12.85)</td>
<td>62.46 (8.58)</td>
<td>42.1* (8.91)</td>
<td>57.24 (12.44)</td>
</tr>
</tbody>
</table>

(x difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 12 Group Z’s backchannels at final clausal boundaries over time

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>Pre-test</th>
<th>Post-test 1</th>
<th>Post-test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x̄ % of Opps</td>
<td>x̄ % of BCs</td>
<td>x̄ % of Opps</td>
</tr>
</tbody>
</table>
Examining the three groups collectively, Figure 7 compares the three groups’ mean percentages of final clause boundaries (CBs) eliciting backchannels (BCs), and Figure 8 compares the three groups’ mean percentages of total backchannels constituted by backchannels occurring at final clause boundaries. While there was some variation in the range of each group, Figure 7 shows that the general trend for all three groups was to send backchannels much less frequently at final clause boundary opportunities in Post-test 1 as compared to the Pre-test and then, in Post-test 2, to revert to a level closer to their original. The decrease in mean percentage from the Pre-test to the Post-test 1 was statistically significant for all three groups; however, the Implicit group was the only group to record a statistically significant decrease from the Pre-test to the Post-test 2.
Concerning the proportions of total backchannels constituted by backchannels at final clause boundaries, Figure 8 demonstrates the disparity between the Explicit group and the other two groups. The mean percentage of the Explicit Group increased by 13.59% from the Pre-test to Post-test 1 and by 6.14% from the Pre-test to Post-test 2. In contrast, the Implicit group decreased from the Pre-test to Post-test 1 by 5.22% and by 9.4% from the Pre-test to Post-test 2, and the Control group decreased by 6.1% and 7.54% respectively.

![Figure 8 Proportions of BCs constituted by BCs at final clause boundaries over time](image)

Simultaneous Speech Backchannels (SSBs)

Tables 13, 14 and 15 report on the use of Non-laughter simultaneous speech backchannels (SSBs) for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study. Mean scores (with standard deviations) and the mean percentage of backchannels constituted by Non-laughter SSBs (with standard deviations) are presented.
Table 13 Group A’s SSBs over time

Types of SSBs	Pre-test			Post test 1			Post test 2			
	N = 10									
Non-laughter		77	7.7 (3.83)	17.48 (7.21)	55	5.5** (3.72)	18.69 (8.76)	51	5.1** (3.14)	14.12** (7.91)

(x̄ difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 14 Group B’s SSBs of over time

Types of SSBs	Pre-test			Post test 1			Post test 2			
	N = 10									
Non-laughter		51	5.1 (5.45)	13.08 (9.81)	47	4.7 (3.34)	17.39 (10.83)	58	5.8 (3.01)	15.41 (8.78)

(x̄ difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 15 Group Z’s SSBs over time

Types of SSBs	Pre-test			Post test 1			Post test 2			
	N = 10									
Non-laughter		61	6.1 (3.03)	13.66 (5.68)	61	6.1 (1.45)	19.86** (4.74)	75	7.5 (2.84)	15.9 (5.99)

(x̄ difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Looking at the data concerning Non-laughter SSBs collectively, Figure 9 shows that the general paths of the Implicit and Control groups mirrored one another by starting comparatively low, remaining fairly stable from the Pre-test to Post-test 1, and then sharply increasing from Post-test 1 to Post-test 2 (by 11 and 14 respectively). The Explicit group, in contrast, showed a sustained decline, of 12 from the Pre-test to Post-test 1, and then another
decrease of 4 from Post-test 1 to Post-test 2. These decreases were found to be strongly significant ($p<.001$ and $p<.001$ respectively).

Figure 9 Non-laughter SSBs of the three groups over time

NESs Observers’ Perceptions

Tables 16, 17 and 18 report on the NES observers’ perceptions (according to their ratings on the modified version of Hecht’s conversational satisfaction questionnaire described above) of the conversational performances for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study. To provide a general idea as to how the overall ratings compared across participant groups at the three tests, the researcher has divided the 17 items in the questionnaire into two groups distinguished by the positive and negative connotations associated with each rating (see Hecht, 1978). For instance, in the items in group one (1, 2, 3, 4, 5, 6, 7, 10, 11, 13 and 16), a low score would indicate a desirable effect, whereas for the items in group two (8, 9, 12, 14, 15 and 17), a high score would convey a desirable effect. The random presentation of the video recorded conversations ensured that the NES observers did not have any knowledge as to the time-line of the conversations or which group each JEFL belonged to.
Table 16 NES observers’ perceptions of Group A over time

<table>
<thead>
<tr>
<th>Items on the Questionnaire</th>
<th>(N = 10)</th>
<th>Pre</th>
<th>Post 1</th>
<th>Post 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 10</td>
<td></td>
<td>(\bar{x})</td>
<td>SD</td>
<td>(\bar{x})</td>
</tr>
<tr>
<td>Group 1 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The JEFL let his/her partner know that the partner was communicating effectively.</td>
<td>2.81</td>
<td>.80</td>
<td>2.23**</td>
<td>.66</td>
</tr>
<tr>
<td>2. The JEFL showed his/her partner that they understood what their partner said.</td>
<td>2.81</td>
<td>.84</td>
<td>2.2**</td>
<td>.69</td>
</tr>
<tr>
<td>3. The JEFL showed that they were listening attentively to what their partner said.</td>
<td>2.21</td>
<td>.6</td>
<td>1.83</td>
<td>.37</td>
</tr>
<tr>
<td>4. The JEFL expressed a lot of interest in what their partner had to say.</td>
<td>2.64</td>
<td>.71</td>
<td>2.02*</td>
<td>.38</td>
</tr>
<tr>
<td>5. The conversation went smoothly.</td>
<td>3.28</td>
<td>1.13</td>
<td>2.2**</td>
<td>.57</td>
</tr>
<tr>
<td>6. The JEFL encouraged partner to continue talking.</td>
<td>2.82</td>
<td>.95</td>
<td>2.55</td>
<td>.66</td>
</tr>
<tr>
<td>7. The feelings that the JEFL expressed by means of listening feedback during the conversation seemed authentic (...)</td>
<td>3.22</td>
<td>.84</td>
<td>2.32**</td>
<td>.75</td>
</tr>
<tr>
<td>10. The JEFL was polite.</td>
<td>2.06</td>
<td>.47</td>
<td>1.5*</td>
<td>.22</td>
</tr>
<tr>
<td>11. The JEFL appeared warm and friendly.</td>
<td>2.34</td>
<td>.66</td>
<td>1.83*</td>
<td>.32</td>
</tr>
<tr>
<td>13. The JEFL appeared interested and concerned.</td>
<td>2.73</td>
<td>.72</td>
<td>2.18*</td>
<td>.39</td>
</tr>
<tr>
<td>16. When the JEFL did not understand, they were able to clearly convey this to their conversational partner with their listening feedback.</td>
<td>3.19</td>
<td>.73</td>
<td>2.39*</td>
<td>.61</td>
</tr>
<tr>
<td>Group 2 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. The JEFL seemed impatient.</td>
<td>6.1</td>
<td>.38</td>
<td>6.36*</td>
<td>.2</td>
</tr>
<tr>
<td>9. The JEFL seemed cold and unfriendly.</td>
<td>6.41</td>
<td>.34</td>
<td>6.46</td>
<td>.22</td>
</tr>
<tr>
<td>12. The JEFL was impolite.</td>
<td>6.52</td>
<td>.29</td>
<td>6.74*</td>
<td>.17</td>
</tr>
<tr>
<td>14. The JEFL interrupted their partner at times.</td>
<td>6.18</td>
<td>.29</td>
<td>6.59*</td>
<td>.13</td>
</tr>
<tr>
<td>15. The JEFL seemed to want to avoid speaking.</td>
<td>5.14</td>
<td>.86</td>
<td>5.99**</td>
<td>.55</td>
</tr>
</tbody>
</table>
The JEFL’s listening behavior seemed inadequate in some ways.

<table>
<thead>
<tr>
<th>Items on the Questionnaire</th>
<th>N = 10</th>
<th>Pre</th>
<th>Post 1</th>
<th>Post 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x̄</td>
<td>SD</td>
<td>x̄</td>
<td>SD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The JEFL let his/her partner know that the partner was communicating effectively.</td>
<td>3.15</td>
<td>.79</td>
<td>2.49*</td>
<td>.49</td>
</tr>
<tr>
<td>2. The JEFL showed his/her partner that they understood what their partner said.</td>
<td>3.1</td>
<td>.81</td>
<td>2.59</td>
<td>.5</td>
</tr>
<tr>
<td>3. The JEFL showed that they were listening attentively to what their partner said.</td>
<td>2.54</td>
<td>.63</td>
<td>2.07</td>
<td>.29</td>
</tr>
<tr>
<td>4. The JEFL expressed a lot of interest in what their partner had to say.</td>
<td>3.06</td>
<td>.7</td>
<td>2.5*</td>
<td>.53</td>
</tr>
<tr>
<td>5. The conversation went smoothly.</td>
<td>3.89</td>
<td>.97</td>
<td>2.98**</td>
<td>.72</td>
</tr>
<tr>
<td>6. The JEFL encouraged partner to continue talking.</td>
<td>3.12</td>
<td>.65</td>
<td>2.63</td>
<td>.48</td>
</tr>
<tr>
<td>7. The feelings that the JEFL expressed by means of listening feedback during the conversation seemed authentic (…).</td>
<td>3.5</td>
<td>.84</td>
<td>2.56*</td>
<td>.52</td>
</tr>
<tr>
<td>10. The JEFL was polite.</td>
<td>2.06</td>
<td>.24</td>
<td>1.54**</td>
<td>.2</td>
</tr>
<tr>
<td>11. The JEFL appeared warm and friendly.</td>
<td>2.4</td>
<td>.58</td>
<td>1.9**</td>
<td>.33</td>
</tr>
<tr>
<td>13. The JEFL appeared interested and concerned.</td>
<td>2.94</td>
<td>.68</td>
<td>2.41</td>
<td>.46</td>
</tr>
<tr>
<td>16. When the JEFL did not understand, they were able to clearly convey this to their conversational partner with their listening feedback.</td>
<td>3.84</td>
<td>.82</td>
<td>2.69**</td>
<td>.65</td>
</tr>
<tr>
<td>Group 2 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. The JEFL seemed impatient.</td>
<td>5.97</td>
<td>.54</td>
<td>6.31</td>
<td>.39</td>
</tr>
<tr>
<td>9. The JEFL seemed cold and unfriendly.</td>
<td>6.18</td>
<td>.33</td>
<td>6.34</td>
<td>.38</td>
</tr>
</tbody>
</table>

(x̄ difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)
<table>
<thead>
<tr>
<th>Items on the Questionnaire</th>
<th>N = 10</th>
<th>Pre</th>
<th>Post 1</th>
<th>Post 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating Scale: 1 (strongly agree) to 7 (strongly disagree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. The JEFL let his/her partner know that the partner was communicating effectively.</td>
<td>2.6</td>
<td>.8</td>
<td>2.19</td>
<td>.57</td>
</tr>
<tr>
<td>2. The JEFL showed his/her partner that they understood what their partner said.</td>
<td>2.71</td>
<td>.79</td>
<td>2.24*</td>
<td>.68</td>
</tr>
<tr>
<td>3. The JEFL showed that they were listening attentively to what their partner said.</td>
<td>2.55</td>
<td>1.17</td>
<td>2.04</td>
<td>.44</td>
</tr>
<tr>
<td>4. The JEFL expressed a lot of interest in what their partner had to say.</td>
<td>2.6</td>
<td>.83</td>
<td>2.34</td>
<td>.65</td>
</tr>
<tr>
<td>5. The conversation went smoothly.</td>
<td>3.2</td>
<td>1.01</td>
<td>2.57*</td>
<td>.71</td>
</tr>
<tr>
<td>6. The JEFL encouraged partner to continue talking.</td>
<td>2.85</td>
<td>.97</td>
<td>2.45</td>
<td>.73</td>
</tr>
<tr>
<td>7. The feelings that the JEFL expressed by means of listening feedback during the conversation seemed authentic (...).</td>
<td>3.24</td>
<td>.8</td>
<td>2.55**</td>
<td>.67</td>
</tr>
<tr>
<td>10. The JEFL was polite.</td>
<td>2.03</td>
<td>.4</td>
<td>1.59*</td>
<td>.24</td>
</tr>
<tr>
<td>11. The JEFL appeared warm and friendly.</td>
<td>2.3</td>
<td>.47</td>
<td>1.98*</td>
<td>.33</td>
</tr>
<tr>
<td>13. The JEFL appeared interested and concerned.</td>
<td>2.56</td>
<td>.54</td>
<td>2.34</td>
<td>.51</td>
</tr>
<tr>
<td>16. When the JEFL did not understand, they were able to clearly convey this to their conversational partner with their listening feedback.</td>
<td>3.15</td>
<td>.79</td>
<td>2.66*</td>
<td>.82</td>
</tr>
</tbody>
</table>

(Δ difference of Pre-test → Post-test 1, and Pre-test → Post-test 2 significant at p<.05 level = *; significant at p<.01 level =**)
As the items in the questionnaire have been separated into the two groups described above, it is possible to compare the sum totals of average responses to items in each group over time and between participant groups in this study. Figure 10 provides an illustration comparing the items in group one between participant groups over time. In this line-graph, the figures on the y-axis represent the sum of the average ratings in response to the group of items, while the x-axis again shows the differences in performance over time. The line-graph demonstrates that the general paths of the three participant groups were quite similar in that the NES observers’ perceptions greatly improved from the Pre-test to Post-test 1, and then experienced a slight decrease from Post-test 1 to Post-test 2. Whereas the Control group (Group Z) followed a similar path generally, the experimental groups experienced considerably greater improvements in ratings from the Pre-test to Post-tests 1 and 2. Specifically, the average NES observers’ ratings improved by 7.24 from the Pre-test to Post-test 1 and by 6.39 from the Pre-test to Post-test 2 for the Implicit group, by 6.82 from the Pre-test to Post-test 1 and by 6.02 from the Pre-test to Post-test 2 for the Explicit group, and by 4.84 from the Pre-test to Post-test 1 and by 4.01 from the Pre-test to Post-test 2 for the Control group.
Figure 10 NES Observers’ perceptions of three groups: Group 1 items

Figure 11 demonstrates the group differences pertaining to the items in group two over time. Similar to the findings in group one above, the line-graph below also demonstrates that the NES observers’ perceptions improved for all three groups from the Pre-test to Post-test 1. The experimental groups also then showed a slight decrease in positive perceptions from Post-test 1 to Post-test 2, while the Control group showed a slight increase. Overall, however, the experimental groups experienced a substantially greater improvement in ratings from the Pre-test to the Post-tests 1 and 2. That is, the average NES observers’ ratings improved by 2.86 from the Pre-test to Post-test 1 and by 2.59 from the Pre-test to Post-test 2 for the Explicit group, by 2.54 from the Pre-test to Post-test 1 and by 2.19 from the Pre-test to Post-test 2 for the Implicit group, and by 1.27 from the Pre-test to Post-test 1 and by 1.5 from the Pre-test to Post-test 2 for the Control group.
Dealing with Situations of Non-understanding

Tables 19, 20 and 21 report on the reactions at points of non-understanding for Group A (Explicit), Group B (Implicit) and Group Z (Control) respectively at the three points of measurement in this study. Data are presented in two areas: the use of unconventional...
backchannels and the use of conversational repair strategies (which are further broken down into minimal versus lengthier conversational repair strategies).

Table 19 Group A’s reactions at points of non-understanding over time

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>NONUs</th>
<th>Unconventional BCs</th>
<th>Conversational Repair Strategies</th>
<th>Minimal BCs</th>
<th>Lengthier expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % of NONUs (SD)</td>
<td>Total % of NONUs (SD)</td>
<td>Total % of NONUs (SD)</td>
</tr>
<tr>
<td>Pre</td>
<td>49</td>
<td>36</td>
<td>69.41 (11.66)</td>
<td>13 30.6 (11.66)</td>
<td>0</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Post 1</td>
<td>32</td>
<td>10</td>
<td>25.17** (28.55)</td>
<td>13 44** (11.2)</td>
<td>9 30.83** (25.47)</td>
<td></td>
</tr>
<tr>
<td>Post 2</td>
<td>30</td>
<td>12</td>
<td>31.38** (22.95)</td>
<td>11 50.93* (30.46)</td>
<td>7 17.69* (19.79)</td>
<td></td>
</tr>
</tbody>
</table>

(\(\bar{x} \) difference of Pre-test \(\rightarrow \) Post-test 1, and Pre-test \(\rightarrow \) Post-test 2 significant at \(p<.05 \) level = *; significant at \(p<.01 \) level = **)}

Table 20 Group B’s reactions at points of non-understanding over time

<table>
<thead>
<tr>
<th></th>
<th>N = 10</th>
<th>NONUs</th>
<th>Unconventional BCs</th>
<th>Conversational Repair Strategies</th>
<th>Minimal BCs</th>
<th>Lengthier expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total % of NONUs (SD)</td>
<td>Total % of NONUs (SD)</td>
<td>Total % of NONUs (SD)</td>
</tr>
<tr>
<td>Pre</td>
<td>46</td>
<td>34</td>
<td>73.17 (11.82)</td>
<td>10 23.17 (10.84)</td>
<td>2</td>
<td>3.67 (7.77)</td>
</tr>
<tr>
<td>Post 1</td>
<td>31</td>
<td>19</td>
<td>58.83 (31.27)</td>
<td>9 31.17 (19.82)</td>
<td>3</td>
<td>10 (21.08)</td>
</tr>
<tr>
<td>Post 2</td>
<td>29</td>
<td>20</td>
<td>68.33 (22.5)</td>
<td>8</td>
<td>28.33 (18.92)</td>
<td>2</td>
</tr>
</tbody>
</table>

(\bar{x} difference of Pre-test \rightarrow Post-test 1, and Pre-test \rightarrow Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Table 21 Group Z’s reactions at points of non-understanding over time

<table>
<thead>
<tr>
<th>N = 10</th>
<th>NONUs</th>
<th>Conversational Repair Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unconventional BCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Pre</td>
<td>44</td>
<td>28</td>
</tr>
<tr>
<td>Post 1</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Post 2</td>
<td>27</td>
<td>17</td>
</tr>
</tbody>
</table>

(\bar{x} difference of Pre-test \rightarrow Post-test 1, and Pre-test \rightarrow Post-test 2 significant at p<.05 level = *; significant at p<.01 level = **)

Figures 12 and 13 illustrate the data collectively. First, in describing Figure 12, the y-axis corresponds to the mean percentage of non-understanding situations (NONUs) eliciting unconventional responses (i.e., conveying understanding and agreement when, in fact, they had not understood), while the x-axis demonstrates the differences in performance longitudinally. Accordingly, it can be seen that the Explicit group displayed the greatest initial and sustained improvement in this area. The Implicit group exhibited a moderate decrease initially at Post-test 1, but this level of improvement was not maintained at Post-test 2. The performance of the Control group, in comparison, remained fairly constant throughout.
Second, Figure 13 focuses on the three groups’ ability to use the lengthier conversational repair strategies (CRSs). Accordingly, the figures on the y-axis represent the mean percentage of non-understanding situations eliciting lengthier conversational repair strategies for each group, while the x-axis again demonstrates the differences in performance longitudinally. Once again, the Explicit group showed the greatest and most sustained improvement, while the Implicit group showed a modest improvement initially at Post-test 1 but then a decrease at Post-test 2. The Control group again did not show any noticeable change over time.
Perceived Development from the Pre-test to Post-test 1

One common feeling for members of all three groups in the qualitative data of Post-test 1 was a general feeling of increased confidence due to the experience of communicating with a NES in an authentic setting. Unsurprisingly, responses from members of the Implicit group reflected that the benefits of their exposure to NESs went beyond the Pre-test and also occurred as part of the Implicit instruction they received. Concerning this treatment, the following responses show various members of this group pointing to general areas of improvement and the methods they used to achieve them:

Kouki: I tried speak more like native speaker style, and give bigger reactions.

Meo: I tried to copy natives as much as I could. From first conversation, I know I have to speak more and ask more questions, and I tried to do this.

Mayumi: The best thing that helped me was comparing what I did with what the natives did. I learned that making mistakes is not as important as keep talking.

Shio: Natives make me feel relaxed and teach me that I must speak more and try to give my opinions sometimes.
It appears, then, that several members of the Implicit group were trying to adopt the conversational style of NESs, which they seemed to equate with speaking more.

When commenting on their Post-test 1 performances, members of the Explicit group also mentioned the instruction they received as a reason for their perceived improvements. These members, however, seemed to be able to specify in greater detail and depth the areas of their development related to what they had learned in class. The following excerpts demonstrate this group’s awareness in terms of the frequency and placement by which they sent backchannels, particularly SSBs:

Aria: I tried to give aizuchi (the Japanese laymen’s word for backchannel) mostly only when she finished her main idea like class taught me.

Kazuya: In first conversation, I did not even think about it, but now I was thinking how much aizuchi and when I should give.

Saya: I knew I shouldn’t aizuchi so much, especially when she is speaking, so I tried to give at the end of sentences.

As demonstrated by the following responses, this group’s learning awareness also extended to include other areas such as variability and WTC:

Michiko: Before like too passive, I didn’t try to speak enough, and maybe I always give same boring aizuchi. Now, I’m using different aizuchi and sharing my thinking and asking questions.

Takanori: I feel better in second conversation because I can speak more and ask questions to my partner.

Miya: I used the FOQ method (Statement + Fact or Opinion or Question as a response strategy) we learned in class. It helped me keep the conversation continue.

Regarding function, several respondents commented that learning how to use conversational repair strategies facilitated communication, as follows:
Chieko: When I didn’t understand before, I did not know what to do, and conversation became broken. Because of lesson, I now had a confidence what to do and what I can say in this situation.

Kazuya: I see aizuchi style is different about interrupting. Little aizuchi don’t need to give so much when he speaking, but more important time like when I need help or something, I should speak this feeling.

Saya: I never changed my aizuchi at all, but in this conversation, I tried to change this and asked the person to explain more until I understand.

Aria: Big thing for my better speaking is I know better what I should say in many different situations, especially when I don’t understand.

Perceived development from Post-test 1 to Post-test 2

Analyzing the qualitative data of the interviews in Post-test 2, a pattern to emerge in the qualitative data of Post-test 2 was a general belief among the experimental groups that their communicative competence had decreased since Post-test 1. The following responses indicate that these members largely attributed their regression to not having had instruction for a great length of time (i.e., eight weeks).

Explicit group:

Hika: I pretended to understand like before. I should have asked for help, but it was too fast and I was too late.

Kazuya: Basically, I was too slow to reaction in conversation, and my aizuchi was too simple like at beginning. I needed more different kinds like my paper I have shows.

Akie: I think I probably gave too many aizuchi, maybe even a lot when we was speaking. And, I did not speak enough or ask enough questions.

Miya: I can’t have good conversation like before because I did not study for it. I should look at my class papers.

Implicit group:

Meo: I did not have any practice chance for this conversation, so I forget everything
from before.

Sachi: I forgot the habits of native speakers because I didn’t have a chance to speak to someone.

Kouki: It was so long since I talked to native that I became very nervous again and couldn’t focus enough on the conversation.

The responses of members of the Explicit group above again seemed to include greater depth and understanding in explaining where they went wrong, and many implied that the information they needed to perform better could be found in one of the many hand-outs they had received in class. In comparison, members of the Control group did not report any major changes regarding their conversational performances from Post-test 1 to Post-test 2; however, the following replies suggested slight improvements in confidence:

Control group:

Tomomi: This was my third conversation, so I get less nervous every time.

Akanori: I could speak more because I knew what to do from other conversations.

Discussion: Improvements in L2 English Backchannel Behavior
Approximating the Listenership of NESs

While both experimental groups adopted more native-like listening behavior after treatment, the Explicit group (Group A) generally outpaced the Implicit group (Group B) in this area. The Explicit group’s improvements were found to be strongly significant (i.e., at the .01 level) from the Pre-test to Post-test 1 and also through to Post-test 2 in areas of frequency, variability and SSBs. In comparison, a statistically significant improvement for the Implicit group was observed at the .05 level in the area of frequency from the Pre-test to Post-test 1; however, it was not evident at the time of Post-test 2. In the area of variability, the Implicit group’s improvements were found to be strongly significant from the Pre-test to Post-test 1 (at the .01 level) and significant at the .05 level from the Pre-test to Post-test 2. Regarding the Control group (Group Z), no significant improvements were found as expected; however, in one of the subcategories of variability, the proportion of
backchannels constituted by Extended responses, the Control group’s performance regressed as their mean percentage decreased significantly (at the .05 level) from the Pre-test to Post-test 2.

Notably, there was one area of analysis in which a statistically significant decline was found for all three groups: backchannels provided at final clausal boundary opportunities (see Figure 7). This was unexpected because this discourse context, which has been identified in the literature as the most common discourse context in English, was explicitly taught to members of Group A. However, while all three groups sent significantly less backchannels at final clausal boundaries from the Pre-test to Post-test 1, this decline was only sustained for the Implicit group in Post-test 2. Although the across-the-board decline between the Pre-test and Post-test 1 is somewhat difficult to explain, the fact that Post-test 2 frequencies in this area (i.e., after no subsequent treatment) returned to near original Pre-test levels for two of the three groups suggests that this discrepancy may have been an aberration. The fact that the three groups were starting at approximately the same point and the Explicit group consistently sent the most backchannels at this discourse context thereafter would seem to suggest that they achieved the highest degree of success in this area also. This is supported by the fact that the Explicit group showed marked increases in the proportions of total backchannels constituted by backchannels at final clause boundaries from the Pre-test to Post-tests 1 and 2, while the Implicit and Control groups showed a steady decline. Finally, the fact that the Implicit and Control groups’ performances consistently deteriorated in this area (from the Pre-test to Post-tests 1 and 2) offers another example in which a lack of treatment may be connected with a deterioration of skills.

The overall findings, which showed that explicit treatment greatly improved JEFLs’ backchannel behavior, seem to go against the conventional wisdom that L2 backchannels are particularly difficult to learn in a way that is not completely implicit due to their spontaneity and automaticity in real-time conversations (Cutrone 2005; Ward et al. 2007). As most JEFLs had never previously even considered their L2 backchannel behavior, it
appears that raising their awareness of this all-important feature of language for the first time was enough to make a dramatic impact on their L2 conversational behavior.

There was also evidence in the JEFLs’ interview data to suggest strong biases towards the English used by NESs. This is consistent with the observations of Suzuki (2010), who pointed out that teacher training programmes in Japan still present only standard American and/or standard British English as a single normative variety of English. Several JEFLs attributed their perceived improvements in their post-treatment interviews to noticing differences between their own conversational output and NESs’ output. The fact that learners consciously perceived the difference between the feature in their target language and their own can be said to be evidence of “noticing the gap” (Schmidt & Frota, 1986, p. 311). Clearly, the resolution of such an enormous issue as to which model of English should be used in Japan is beyond the focus of this current investigation; however, the writer strongly believes that this aspect of the study has touched upon an important issue that seems to be in dire need of re-examination in Japan (Jenkins, 2003; Seidlhofer, 2004; Widdowson, 1997).

Conversational Involvement

In terms of conversational involvement, both experimental groups showed benefits of instruction; however, the Explicit group (Group A) again generally outpaced the Implicit one (Group B). The Explicit group’s improvements were found to be strongly significant from the Pre-test to Post-test 1 in all three subcategories of Involvement in Conversation: WTC scores, amount spoken as primary speaker, and number of follow-up questions asked. The Explicit group’s initial improvements in this area varied among the sub-skills at the delayed Post-test 2. That is, from the Pre-test to Post-test 2, the improvement in mean WTC scores was again found to be significant at the .01 level, while the increase in mean number of questions was significant at the .05 level, and the difference in mean number of words was not found to be statistically significant. In comparison, the improvements in mean WTC scores for the Implicit group were found to be strongly significant from the Pre-test to Post-test 1 and from the Pre-test to Post-test 2; however, no significant improvements
were evident in the other two subcategories. Finally, no significant improvements for the Control group were found in this area; however, as was the case with the Variability category, the Control group’s performance significantly regressed (at the .05 level) in one of the subcategories of this skill-set: mean number of questions asked. This further suggests that a lack of treatment may eventually lead to skill loss.

Some of the results in this area were predictable. For instance, it was not surprising at all that the group that received explicit instruction was the only group to show improvements in the use of conversational management techniques. These improvements occurred not only because the JEFLs in this group were taught specific expressions to use in certain situations, but more importantly because they were explicitly made aware of the negative perceptions that their cross-cultural interlocutors would have of them if they persisted to speak English with a Japanese mind-set (i.e., negatively transfer their backchannel behaviour from their L1 to L2 English). As reflected by their WTC scores and interview responses over time, members of the Explicit group (Group A) seemed to have been motivated to change their behaviour in order make a good impression across cultures. This was also demonstrated by the fact that the Explicit group was the only group to ask significantly more questions from the Pre-test to Post-test 1 and the Pre-test to Post-test 2. Still, this seems be an area that needs to be constantly reinforced, as suggested by the decline in number of questions from Post-test 1 to Post-test 2. Another finding that was not surprising was the fact that the Implicit group’s (Group B) WTC scores significantly increase over time. The researcher believes that increased confidence (and decreased language anxiety) exhibited by the Implicit group in this study is mainly due to their extensive exposure to NESs. At the study’s onset, most students admitted to being especially nervous because they did not have much, if any, experiencing communicating with a NES in a social context. The more experience they gained doing so, the less scared they seemed to feel about it.

Concerning how much participants in each group spoke, the results were largely inconclusive. Although members of the Explicit group produced significantly more words
directly after treatment, their word output in Post-test 2 returned to near its Pre-test level. Further, the Implicit and Control groups also showed a similar increase in word output from the Pre-test to Post-test 1 and then a similar decrease from the Pre-test to Post-test 2 (see Figure 3). Thus, the increase may have had more to do with the JEFLs, collectively, feeling more confident (and less anxious) in speaking in Post-test 1 because they knew what to expect from their experience in the Pre-test. Moreover, the fact that the standard deviations are quite high across groups in this category suggests considerable variability within the performances of the JEFLs.

Conversational Repair Strategies

Although the success of explicit instruction on the aspects of backchannel production that are thought to be spontaneous and automatic may be somewhat surprising, it was rather predictable that the Explicit group was the only group in this study to improve in this area. In a similar study in which Takahashi (2001) investigated four input enhancement conditions for Japanese learners acquiring biclausal request forms in English, the students receiving explicit instruction were much better able to produce the set expressions (i.e., formulaic chunks of language) needed to continue the conversation and/or avoid communication breakdown. As shown in Figures 12 and 13 above, the Explicit group (Group A) clearly outpaced the other two groups (Groups B and Z) from Pre-test to Post-test 2 by demonstrating a significant increase in the amount of lengthy conversational repairs and a significant decrease in unconventional backchannels at situations of non-understanding employed. This can be explained by the fact that members of the Explicit group were taught specific linguistic expressions to use to manage a wide array of conversational situations (i.e., such as when they do not understand) and given practice opportunities and feedback to help them hone their skills. In comparison, the other groups (Groups B and Z) did not use a wide range of conversational repair strategies to manage conversational situations simply because they may have not even been exposed to such useful phrases and did not receive any training in how and when to use them.

Intercultural Communicative Competence (ICC)
The data analysis of this category produced some clear and interesting findings (see Figures 10 and 11). First and foremost, this was another category in which the Explicit group (group A) outpaced the other two groups by a wide margin. This was demonstrated by the Explicit group’s statistically significant improvement on 14 of 17 items on Hecht’s (1978) modified questionnaire from the Pre-test to Post-test 1 (6 of which were significant at the .01 level), and 13 of 17 items from the Pre-test to Post-test 2 (4 of which were significant at the .01 level). It was somewhat predictable that the JEFL group that came the closest to adopting NES norms also received the highest ratings in the NESs’ conversational satisfaction questionnaires. This finding supports the hypotheses that backchannel conventions that are similar across cultures lead to positive perceptions and higher degrees of conversational satisfaction, whereas backchannel practices which differ run a much greater risk of being perceived negatively and/or resulting in miscommunication across cultures (Cutrone, 2005; White, 1989).

Interestingly, the Implicit group (Group B) and the Control group (Group Z) also registered several significant improvements in this category. Specifically, the Implicit group showed a statistically significant improvement on 9 of 17 items from both the Pre-test to Post-test 1 and the Pre-test to Post-test 2 (in both cases, 4 items were significant at the .01 level). The Control group (Group Z) showed a statistically significant improvement on 7 of 17 items from both the Pre-test to Post-test 1 and the Pre-test to Post-test 2 (only 1 item from the Pre-test to Post-test 1 was significant at the .01 level). The findings that demonstrated some level of improvement (i.e., increased ratings) for all three groups in this area were somewhat unexpected; however, these data may be linked to the NES observers (i.e., the raters) picking up on the JEFLs’ increased confidence. As mentioned above, the JEFLs were especially nervous at the study’s onset because they had no idea what to expect (and many had not even spoken socially with a NES before). However, as the study progressed, the JEFLs reported higher degrees of confidence and less anxiety across the board because they were more familiar and comfortable with the study’s process and their role in it.

Relating the Findings to SLA Theory
In relation to Schmidt’s (1993) noticing hypothesis and the more general question of how input becomes intake in the process of SLA, this is a debate that the writer does not expect to be resolved any time soon. The finding that explicit treatment (i.e., drawing attention to non-salient features of language such as listener responses) facilitates learning would seem to offer encouragement for the noticing hypothesis; however, it falls short of providing conclusive evidence supporting it. There are several issues involving the testability of the noticing hypothesis, which include an inconsistent and vague interpretation of what it means to notice in the research literature, the failure to recognize noticing as an internal process that cannot be observed directly, and the fact that noticing requires a high degree of inference from observation of behaviour (Cross, 2002; Truscott, 1998). Schmidt (1990, 1993) equates noticing with attention plus awareness, which is operationalized as a cognitive process that takes place both during and directly after exposure to the input that is available for self-report. Therefore, as mentioned above, the fact that the Explicit group (Group A) received explicit input enhancement (i.e., increased opportunities to notice), subsequently demonstrated a much greater improvement than the other groups (Group B and Z) in terms of actual conversational performance (and L2 backchannel behaviour) over time, and then were able to report on specific areas of improvement by referring to what they had learned in class (i.e., what they had noticed) would seem to offer support for, at the very least, a mild version of the noticing hypothesis.

Additionally, the findings of this study would also seem to support Ellis’ (2006a) belief that explicit input enhancement is particularly useful in dealing with acquisition issues related to lack of salience and L1-influenced blocking. Regarding the lack of salience issue, non-salient features of language such as backchannels seem to require intentionally focused attention to facilitate effective L2 learning. Concerning the L1-influenced blocking problem, the findings of this study suggest that consciously channelling attention to backchannel behavior may have helped change the cues that learners focused upon in their language process, which ultimately changed what their implicit learning systems were able to take in. As the Control group’s lack of progress demonstrated throughout this study, it is likely that without such a change in the attentional focus of cues, learners would continue to
demonstrate a great deal of L1 negative pragmatic transfer where backchannels are concerned, perhaps only gradually showing glimpses of improvement after substantial L2 experience. Thus, as MacWhinney (2001) asserts, form-focused-instruction (FFI) can be seen as a way to speed up the learning process.

As reported above, members of the Explicit group clearly showed the most improvement in their backchannel behavior throughout the course of this study. However, it is also worthy to note that members of the Implicit group also displayed considerable improvements in several key areas of backchannel behavior. Schmidt’s (1983) case study providing evidence of the implicit learning of L2 backchannel behavior in an immersion setting, and the opinions given by many of the JEFLs, would seem to further support a mixed approach. Accordingly, a sensible way forward may be a combination of these methods in which implicit methods are used to supplement an explicit approach. This would seem to be consistent with Nick Ellis’ (2008) explanation of how Schmidt’s (1993) noticing hypothesis works:

> once a stimulus representation is firmly in existence, that stimulation need never be noticed again; yet as long as it is attended for use in the processing of future input for meaning, its strength will be incrementated and its associations will be tallied and implicitly catalogued. (p. 105)

In this description, Ellis also helps us understand how explicit knowledge is converted into implicit knowledge. Hence, as it relates to the findings of this study, it appears that explicit input enhancement (i.e., what draws learners attention) may be particularly helpful in facilitating the learning in the early stages of pragmatic development; however, sustained and long-term development in this area will likely depend on reinforcement opportunities and how much the learner is able to use the newly learned skill in authentic settings.

Conclusion

In summarizing the findings of this study, RQs 1 and 2 are addressed in succession below. First, concerning the effects of instruction on listening behavior, (RQ 1) the findings of this longitudinal study demonstrate that instructional treatment clearly had a positive effect on the listening behavior of both experimental groups, and (RQ 2) the group that received
explicit treatment, by and large, outpaced the group that received implicit treatment. Although benefits of FFI in the teaching of L2 backchannel behavior have been shown, it is difficult to reach any firm conclusions regarding Schmidt’s (1993) noticing hypothesis due to the issues mentioned above. Noticing appears to be helpful in speeding up the process of learning L2 backchannels, but it remains unclear as to whether it is actually necessary or not. While this distinction may be particularly important to theorists, it is far less relevant to classroom practitioners whose main goal is to help students learn the target language in the most efficient way possible. Accordingly, the researcher adopts the position taken by Swan (2005) as follows:

The role of instruction in a typical language classroom is not, surely, to attempt the impossible task of replicating the conditions of natural acquisition, but to compensate for their absence. (p. 393)

In the broader context of language pedagogy, the main value of the present study would be in the general finding that pedagogical interventions, and most notably explicit input enhancement, did indeed appear to have a positive effect on L2 backchannel behavior. This not only provides support for the incorporation of backchannel behavior into the language classroom and cross-cultural communication training in the JEFL context, but also provides ELT professionals with some pedagogical suggestions moving forward. The researcher hopes this study will serve as a platform for future investigation and diagnosis into this somewhat neglected aspect of pragmatic competence.
List of References

List of Appendices

Appendix A: An Example of a Transcribed Conversation Used in this Study

Transcription Conventions

• Listener responses are shown in italics below the primary speaker’s talk at the point they occurred in the talk.
• To protect the identity of the participants, pseudonyms are used in the speaker labels on the left side of each transcribed line.
• To not confuse readers with the colons that are used for a different purpose described below, the speaker labels will be followed by a semi colon.
• To further preserve anonymity, pseudographs (i.e., notations in parentheses) will be used in instances where participants’ private information such as name, address and/or telephone number has been uttered in the conversation.
• Numbers in parentheses indicate elapsed time in hundredths of seconds of pauses occurring in the conversations. Parentheses with a dot (.) indicate a micropause and/or hesitation under .5 seconds. Pauses are timed using transcription software in this study (Praat Version 5.0.18).
• The equal sign “=” indicates latching - i.e., no interval between the end of a prior piece of talk and the start of a next piece of talk.
• The beginnings of simultaneous speech utterances are marked by placing an opening square bracket at each of the points of overlap, and placing the overlapping talk directly beneath the talk it overlaps.
• Closing square brackets indicate the point at which two simultaneous utterances end.

Metatranscription is shown as follows:

• Empty parentheses () indicate part of the transcription that is unintelligible.
• Words between parentheses indicate the transcribers’ conjecture at the words or utterances in the conversation that they are not completely certain of.
• Words between double parentheses may indicate comments and/or features of the audio materials other than actual verbalization.
• L stands for laughter.
• Other than apostrophes, which are used to show contraction between words, punctuation symbols in these transcriptions are not used as regular English punctuation markers indicating grammatical category. While other, non-regular, grammatical functions are shown by symbols such as slashes and double slashes, other punctuation symbols such as question marks and colons are used to indicate prosodic features in these transcriptions.

Nonverbal behavior is shown by the symbols indicated below.
h stands for audible breathing. ^ stands for vertical head movement (head nod). > stands for horizontal head movement (head shake). S stands for smile. " indicates that eyebrows are raised. G indicates body or hand gestures.

In cases where nonverbal behavior occurs concurrently with speech, symbols are placed directly above the speech with which it co-occurs (instances where two types of nonverbal behavior occur simultaneously are shown by underlining them both). Nonverbal behavior that is continuous and occurs for a period longer than 2 seconds will be noted by signaling the beginning and the end of the behavior in parentheses where it occurs in the conversation. (N.B. The parentheses containing the symbols below are solely used for separation purposes to make them easily identifiable in the specific examples below. Parentheses will not be used in this manner in the transcriptions as they have other specific functions, which have been outlined above.)

A slash (/) marks the grammatical completion point of an internal clausal boundary (i.e., a clause which is continuative).

Two slashes side by side (//) mark the grammatical completion point of a final clause boundary (i.e., a clause which is terminative). N.B. A final clause boundary is one that makes complete sense (i.e., fully meaningful) and could end the utterance there. In contrast, an internal clause is one in which the meaning is not complete, and there is a requirement for the utterance to go on in order for the meaning to be complete.

A question mark (?) at the end of a word and/or utterance indicates a clear rising vocal pitch or intonation (i.e., one that is clearly heard, and is shown to rise by at least 600 Hz using Praat software).

An inverted question mark (¿) at the end of a word and/or utterance indicates a clear falling pitch or intonation (i.e., one that is clearly heard and is shown to fall by at least 600 Hz using Praat software).

A colon (:) as in the word “ye:s” indicates the stretching of the sound it follows (i.e., only marked in cases where the stretching was extended greater than .5 seconds).

A hyphen at the end of an uncompleted word indicates the disfluency of a truncated word. For instance, if the word “word” were truncated, it may be transcribed as “wor-“.

A part of a word and/or phrase containing CAPITAL letters indicates that it has been said with increased volume and/or more emphatically than the rest of the phrase (i.e., only marked when the highest point of the stressed part of speech is 10 decibels greater than the lowest part of the surrounding parts of speech).

The underscore sign (_) indicates that the talk it precedes is low in volume.

(~) indicates that the talk which follows is consistent with the person’s regular voice and tone. This symbol is used after low volume talk to indicate the point at which the volume rises back to normal. When a pause occurs after the low volume talk and the talk that follows returns to normal, this symbol is not shown.
Sample Transcription

1. Haruna; (1.89) yeah i have tried// (1.27) i had (.70) ()// (.) and (.) exam// (.) (1.87)

 ^
 uhuh

2. Haruna; maybe (1.36) (it's ok)// _ Lh [(Lh ma)]ybe (.85)

 ^ L ^ ^ ^
 [yeah maybe it's ok]

3. Andrea; h (urrr) what [exa]ms do you have// next week// do you have just one// (.65)

 [()]

4. Haruna; no: (.) i have (1.67) four¿// (1.10)

 really? (.68) eee =

5. Haruna; = and two reports// (.62) (.) yeah¿ (.77) (.) next (.59)

 next week? oh wow

6. Haruna; wednesday and (1.10) tuesday () thursday, (.)

7. Andrea; ahh (isn't it)// it it's this coming week// (.) [(your)] exam week, (.99)

 ^
 [(yeah)]

8. Andrea; ah at chodai (.) last week, = = was our exam week// =

 = last week = = (eeeya) (.62) uu =

9. Andrea; so everyone is finished// (.) so last night, we had a party// (.)
10. Andrea; like a (.) like YAAY [(Lh) (finished)] party _Lh (.)

11. Andrea; [(so yeah at an izakaya)] (.) so =

12. Haruna; [where] = did you go/ (.)

13. Andrea; umm (.) there's an izakaya/ i:n sumiyoshi// (.) that's called (1.38)

14. Andrea; _ahh i forget. the name// (.71) ok (.) if there's (1.22) uu:mm (.65)

15. Andrea; if this is chitosepia/ = (.) and here's like the main road// (.) [(the)] big road, (.99)

16. Andrea; and here is an the arcade// entrance to the arcade, (.) _ (arcade) here, (.)

17. Andrea; and there's like a little (.) aah there's a bus stop// (.) and a little park// (.91)

18. Andrea; so go down this road// past chitose-, chitosepia is like here// (.) (.)

 oh ok
19. Andrea; and there's a road. here// = = go down this like the main the big chitospeia,

= _ (mm) =

20. Andrea; i think it's (.) showa machi// (.) (.) ummm () yeah yeah yeah

yes

21. Andrea; go down that road// (.) and it's it's on the (1.07) it's on the lu lu left side// (.50)

22. Andrea; i don't remember. the name// (.81) = kind of big though, (.) (.)

" _ (mm) = " _ (mm) =

23. Andrea; _ mm ~ kind of nice, = = cuz we had (1.10) sixteen people// (.)

= Lh =

24. Andrea; [so] it was very big// _ mmm (1.18) izakaya (.91)

" [(oh)]

25. Haruna; (there is a) (.69) (all) (.76) _ (kenkyussei// no) (.)

26. Andrea; oh [ken]kyussei, = = mm?mm¿mm? (.) umm maybe like (.)

[(oh)] = _ kenkyussei =

27. Andrea; about half (.56) japanese students and half (aaa) foreign students, (.) (.)

_ (ooh)}
28. Andrea; but i'm the only kenkyussei// (.56) other students,

29. Andrea; are like regular ryu gakkussei// (.65) i think (1.33) or just (.) japanese // (college students)//

30. Andrea; so they all had to take the test// (.79) [(so they were all like)]

31. Andrea; oo oo oo we're so tired// oo yay = [(we're finished)]// (.)

32. Andrea; but i said like (oh ok fine)// = = i didn't do anything// = [so]

33. Andrea; [(not bad)] (.) like a bonenkai, but not a bou nen [(kai, like)]

34. Andrea; a (.) [(like a bon shu there you go)]// (.) so (.) (.)

35. Andrea; yeah (.) (it was fun)// (.99) so (1.02)

36. Andrea; did you do anything. fun// yesterday// (.54) = uu uh (1.44)

37. Haruna; yesterday (2.40) i (.) i did a part-time job// (.)
Appendix B: Willingness to Communicate Scale

DIRECTIONS: Below are twenty situations in which a person might choose to communicate or not to communicate in English. Presume that the person in each situation does not speak Japanese but can speak English. Also, presume you have completely free choice. Indicate the percentage of times you would choose to communicate in each type of situation. Indicate in the space at the left what percent of the time you would choose to communicate.

0 = never, 100 = always

_____ 1. *Talk with a service station attendant.
_____ 3. Present a talk to a group of strangers.
_____ 4. Talk with an acquaintance while standing in line.
_____ 5. *Talk with a salesperson in a store.
_____ 6. Talk in a large meeting of friends.
_____ 7. *Talk with a police officer.
_____ 8. Talk in a small group of strangers.
_____ 9. Talk with a friend while standing in line.
_____ 11. Talk in a large meeting of acquaintances.
_____ 12. Talk with a stranger while standing in line.
_____ 14. Present a talk to a group of friends.
_____ 15. Talk in a small group of acquaintances.
_____ 17. Talk in a large meeting of strangers.
_____ 18. *Talk with a spouse (or girl/boyfriend).
_____ 19. Talk in a small group of friends.
_____ 20. Present a talk to a group of acquaintances.

N.B. JEFLs were provided with Japanese explanations. Further, the asterisk (*) marking the filler items above, as well as the scoring table below, were not included on the questionnaires the JEFLs completed.

SCORING: The WTC permits computation of one total score and seven sub-scores. The sub-scores relate to
willingness to communicate in each of four common communication contexts and with three types of
audiences. To compute your scores, merely add your scores for each item and divide by the number indicated
below.

<table>
<thead>
<tr>
<th>Subscore Desired</th>
<th>Scoring Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group discussion</td>
<td>Add scores for items 8, 15, and 19; then divide by 3.</td>
</tr>
<tr>
<td>Meetings</td>
<td>Add scores for items 6, 11, and 17; then divide by 3.</td>
</tr>
<tr>
<td>Interpersonal conversations</td>
<td>Add scores for items 4, 9, and 12; then divide by 3.</td>
</tr>
<tr>
<td>Public speaking</td>
<td>Add scores for items 3, 14, and 20; then divide by 3.</td>
</tr>
<tr>
<td>Stranger</td>
<td>Add scores for items 3, 8, 12, and 17; then divide by 4.</td>
</tr>
<tr>
<td>Acquaintance</td>
<td>Add scores for items 4, 11, 15, and 20; then divide by 4.</td>
</tr>
<tr>
<td>Friend</td>
<td>Add scores for items 6, 9, 14, and 19; then divide by 4.</td>
</tr>
</tbody>
</table>

To compute the total WTC scores, add the sub-scores for stranger, acquaintance, and friend. Then divide by 3.

Appendix C: Ten Item Personality Inventory

Name（名前）: __________________ Date（記入日）: __________

Following the scale below, please write a number next to each statement below to indicate
the degree to which you agree or disagree with that statement. (下の枠内の1から7までのスケールに従って、1から7までの問いに対して、最も自分に当てはまる度数の数字を、問いの数字横の空欄に入れてください。)

<table>
<thead>
<tr>
<th>Disagree Strongly</th>
<th>Disagree moderately</th>
<th>Disagree a little</th>
<th>Neither agree nor disagree</th>
<th>Agree a little</th>
<th>Agree moderately</th>
<th>Agree strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>(全く違うと思う)</td>
<td>(あまりそうとは思わない)</td>
<td>(少し違うと思う)</td>
<td>(どちらでもない)</td>
<td>(少しそそう思う)</td>
<td>(まあまあそう思う)</td>
<td>(強くそう思う)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

I see myself as（私は自分のことを・・・）:

1. _____ Extraverted, enthusiastic. （外向的、社交的、熱心だと思う）
2. _____ Critical, quarrelsome. （批判的、口やかましいと思う）
3. _____ Dependable, self-disciplined. （頼りがいがある、自立していると思う）
4. _____ Anxious, easily upset. （感情が変化しやすい、すぐいらいらすると思う）
5. _____ Open to new experiences, complex. （新しい経験や物事に挑戦する事が好き）
6. _____ Reserved, quiet. （遠慮がち、おとなしいと思う）

7. _____ Sympathetic, warm. （思いやりがある、あたたかみがあると思う）

8. _____ Disorganized, careless. （注意ミスが多い、忘れ物が多いと思う）

9. _____ Calm, emotionally stable. （おだやか、感情が安定していると思う）

10. _____ Conventional, uncreative. （新しい物事に保守的、独創性がないと思う）

(N.B. The Japanese translation of the TIPI has since been modified and renamed the TIPI-J as presented in the recent works of Oshio, Abe & Cutrone, 2012.)

Appendix D: Inventory of Conversational Satisfaction

For NES Interlocutors

Your Name: Partner’s name:

Key: 1 = Yes 7 = No Date:

Please score the sentences below based on how often you thought they generally occurred in the conversation. Based on the key shown above, circle the number that best corresponds to your opinion.

1. S/he let me know that I was communicating effectively……………………….1 2 3 4 5 6 7

2. The feelings that my partner expressed by means of listening feedback during the conversation seemed authentic (i.e., they conveyed what they were truly feeling and were not just agreeing and/or pretending to understand to keep the conversation going smoothly)…………………………..…. 1 2 3 4 5 6 7

3. S/he showed me that s/he understood what I said…………...……………......….1 2 3 4 5 6 7

4. S/he showed me that s/he listened attentively to what I said…………………....... 1 2 3 4 5 6 7

5. S/he expressed a lot of interest in what I had to say…………………………........ 1 2 3 4 5 6 7

6. The conversation went smoothly……………………………..………….…..……1 2 3 4 5 6 7

7. S/he encouraged me to continue talking………………………………....….……1 2 3 4 5 6 7

8. S/he seemed impatient…………………………………………………...…..……1 2 3 4 5 6 7

9. S/he seemed cold and unfriendly……………………………………….…….….. 1 2 3 4 5 6 7

10. S/he was polite……………………………………………..………..………..…1 2 3 4 5 6 7

11. S/he appeared warm and friendly………………………………………………1 2 3 4 5 6 7
12. S/he was impolite…………………………………………………………1 2 3 4 5 6 7
13. S/he appeared interested and concerned……………………………...1 2 3 4 5 6 7
14. S/he interrupted me………………………………………………………1 2 3 4 5 6 7
15. My conversation partner seemed to want to avoid speaking………...1 2 3 4 5 6 7

16. Please include any other comments and/or observations regarding the Japanese participant’s behavior in the conversations. (Feel free to add any comments you have regarding Japanese people’s listening behavior in general.)

__
__
__
__
__

For JEFLs

Inventory of conversational satisfaction （対話による満足度調査アンケート）

Key: 1 = Yes (最もそう思う) 7 = No（全くそう思わない）

1. S/he let me know that I was communicating effectively…………………1 2 3 4 5 6 7
 （私との会話を全体的に理解してくれているようだった）

2. I felt I was able to present myself fairly during the conversation…………1 2 3 4 5 6 7
 （私は、自分の気持ちを会話の中できちんとと言えたと思う）

3. S/he showed me that s/he understood what I said…………………...…1 2 3 4 5 6 7
 （相手は、私の話した内容を理解してくれていた）

4. S/he showed me that s/he listened attentively to what I said…………...…1 2 3 4 5 6 7
 （相手は、私の話しに注意深く耳を傾けてくれていた）

5. S/he expressed a lot of interest in what I had to say……………………1 2 3 4 5 6 7
 （相手は、私の話す内容にとても興味がある様子だった）

6. The conversation went smoothly…………………………………………….1 2 3 4 5 6 7
 （この対話はスムーズに進んだ）

7. S/he encouraged me to continue talking……………………………...1 2 3 4 5 6 7
 （相手は、私が話を続けやすいようにサポートしてくれた）

8. S/he seemed impatient………………………………………………...……1 2 3 4 5 6 7
 （相手は、いららいしている様子だった）

9. S/he seemed cold and unfriendly……………………………………...1 2 3 4 5 6 7
 （相手は、冷たい反応で、不親切だった）

10. S/he was polite…………………………………………………………..1 2 3 4 5 6 7
 （相手は、丁寧な対応だった）

11. S/he appeared warm and friendly……………………………………….1 2 3 4 5 6 7
 （相手は、あたたかく、親切な反応だった）
12. S/he was impolite…………………………………………………………1 2 3 4 5 6 7
（相手は、失礼な態度だった）
13. S/he appeared interested and concerned……………………………..….……1 2 3 4 5 6 7
（相手は、私の話に興味と関心を示してくれた）
14. S/he interrupted me……………………………………………………………..……1 2 3 4 5 6 7
（相手は、私の話の邪魔や妨害、さえぎりをした）
15. My conversation partner seemed to want to avoid speaking………………1 2 3 4 5 6 7
(彼ら自身が絶対話さなくていいように、他の人に話し続けてほしいと思っているという印象を与えていている)
16. Please include any other comments and/or observations regarding the participant’s behavior in the conversations. （上記に無いコメントや意見、感想などがあれば書いてください）
__
__
__
__
For NES Observers

Date: _________________ Name: ___________________ Key: 1 = Yes 7 = No

Please score the sentences below based on how often you thought they generally occurred in the conversation. Based on the key shown above, circle the number that best corresponds to your opinion.

1. The Japanese person let his/her partner know that the partner was communicating effectively. …………………………………………………………………………………1 2 3 4 5 6 7
2. The Japanese person showed his/her partner that they understood what their partner said. …………………………………………………………………………………1 2 3 4 5 6 7
3. The Japanese person showed that they were listening attentively to what their partner said.………………………………………………………………………………1 2 3 4 5 6 7
4. The Japanese participant expressed a lot of interest in what their partner had to say.………………………………………………………………………………1 2 3 4 5 6 7
5. The conversation went smoothly……………………………………………1 2 3 4 5 6 7
6. The Japanese encouraged his/her partner to continue talking………………………………………………………………………………1 2 3 4 5 6 7
7. The feelings that the Japanese person expressed by means of listening feedback during the conversation seemed authentic (i.e., they conveyed what they were truly feeling and not just agreeing and/or pretending to understand for the sake of harmony and/or to keep the conversation going smoothly)………………………………………………………………………………1 2 3 4 5 6 7
8. The Japanese person seemed impatient………………………………….…………………………1 2 3 4 5 6 7
9. The Japanese person seemed cold and unfriendly……………………..………1 2 3 4 5 6 7
10. The Japanese person was polite...1 2 3 4 5 6 7

11. The Japanese person appeared warm and friendly...............................1 2 3 4 5 6 7

12. The Japanese person was impolite..1 2 3 4 5 6 7

13. The Japanese person appeared interested and concerned......................1 2 3 4 5 6 7

14. The Japanese person interrupted their partner at times.........................1 2 3 4 5 6 7

15. The Japanese person seemed to want to avoid speaking.........................1 2 3 4 5 6 7

16. When the Japanese person did not understand something, they were able to clearly convey this to their conversational partner with their listening feedback...1 2 3 4 5 6 7

17. The Japanese person’s listening behavior seemed inadequate in some ways....1 2 3 4 5 6 7

If you answered “yes” (i.e., 1, 2 or 3) to question 17, please explain how and/or why you think their listening behavior seemed inadequate.

__
__
__

18. Any other comments and/or observations regarding the Japanese participant’s behavior in the conversation.

__
__
__

Appendix E: Data Record Sheet to Record Instances of Miscommunication

<table>
<thead>
<tr>
<th>Data Record Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wanting the speaker to continue = CONT</td>
</tr>
<tr>
<td>2. Indicating understanding of content = UND</td>
</tr>
<tr>
<td>3. Indicating agreement = AGR</td>
</tr>
<tr>
<td>4. Showing empathy and support to the speaker’s evaluative statement = EAS</td>
</tr>
<tr>
<td>5. Showing a strong emotional response = SER</td>
</tr>
<tr>
<td>6. As a minor addition = MA</td>
</tr>
<tr>
<td>7. Asking for clarification = CLAR</td>
</tr>
<tr>
<td>8. Indicating non-understanding = NONU</td>
</tr>
<tr>
<td>9. Indicating disagreement or dissatisfaction = DOD</td>
</tr>
<tr>
<td>10. Other = OTH</td>
</tr>
<tr>
<td>11. Indicating boredom and/or disinterest in the conversation = BODI</td>
</tr>
<tr>
<td>12. Indicating impatience and a desire for the speaker to finish quickly = IMP</td>
</tr>
<tr>
<td>13. Giving the impression that their response was insincere = INSI</td>
</tr>
<tr>
<td>14. Giving the impression of not understanding but pretending to = PRET</td>
</tr>
<tr>
<td>15. Giving the impression that they want to keep the other person speaking strictly to avoid</td>
</tr>
</tbody>
</table>
speaking themselves = AVSP
(N.B. More than one function is possible. It also possible for the interviewee to be unsure, which will be demonstrated with a question mark.)

<table>
<thead>
<tr>
<th>Time</th>
<th>JEFL BC Intentions</th>
<th>NES BC Perceptions</th>
<th>Analysis (notes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>JEFL BI</th>
<th>NES Perceptions</th>
<th>Analysis (notes)</th>
</tr>
</thead>
</table>

Appendix F: Tables Demonstrating Characteristics of Three Groups

Characteristics Pertaining to Members of Group A

<table>
<thead>
<tr>
<th>Pseudonym</th>
<th>Gender</th>
<th>TOEIC Scores</th>
<th>L2 WTC (dyadic)</th>
<th>Personality (Extraversion)</th>
<th>Age</th>
<th>Year of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michiko</td>
<td>F</td>
<td>700</td>
<td>65</td>
<td>6.5</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Hika</td>
<td>F</td>
<td>650</td>
<td>60</td>
<td>6</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Aria</td>
<td>F</td>
<td>625</td>
<td>44</td>
<td>2</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Haruna</td>
<td>F</td>
<td>555</td>
<td>61</td>
<td>6</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Miya</td>
<td>F</td>
<td>500</td>
<td>54</td>
<td>4</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Saya</td>
<td>F</td>
<td>470</td>
<td>45</td>
<td>4.5</td>
<td>19</td>
<td>3rd</td>
</tr>
<tr>
<td>Chieko</td>
<td>F</td>
<td>445</td>
<td>34</td>
<td>3</td>
<td>20</td>
<td>2nd</td>
</tr>
<tr>
<td>Ayuka</td>
<td>F</td>
<td>360</td>
<td>42</td>
<td>5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Takanori</td>
<td>M</td>
<td>504</td>
<td>40</td>
<td>4</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Kazuya</td>
<td>M</td>
<td>480</td>
<td>39</td>
<td>2.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>AVG.</td>
<td></td>
<td>528.9</td>
<td>48.4</td>
<td>4.35</td>
<td>19.4</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics Pertaining to Members of Group B

<table>
<thead>
<tr>
<th>Pseudonym</th>
<th>Gender</th>
<th>TOEIC Scores</th>
<th>L2 WTC (dyadic)</th>
<th>Personality (Extraversion)</th>
<th>Age</th>
<th>Year of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rika</td>
<td>F</td>
<td>685</td>
<td>50</td>
<td>5</td>
<td>20</td>
<td>2nd</td>
</tr>
<tr>
<td>Shio</td>
<td>F</td>
<td>630</td>
<td>49</td>
<td>3</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Mayumi</td>
<td>F</td>
<td>585</td>
<td>35</td>
<td>2</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Meo</td>
<td>F</td>
<td>550</td>
<td>52</td>
<td>2.5</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Madora</td>
<td>F</td>
<td>500</td>
<td>60</td>
<td>4.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Sachi</td>
<td>F</td>
<td>475</td>
<td>59</td>
<td>5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Keiko</td>
<td>F</td>
<td>460</td>
<td>39</td>
<td>4.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Mika</td>
<td>F</td>
<td>390</td>
<td>51</td>
<td>3.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Taro</td>
<td>M</td>
<td>525</td>
<td>58</td>
<td>5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Kouki</td>
<td>M</td>
<td>450</td>
<td>51</td>
<td>4</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>AVG.</td>
<td></td>
<td>525</td>
<td>50.4</td>
<td>3.9</td>
<td>19.4</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics Pertaining to Members of Group Z

<table>
<thead>
<tr>
<th>Pseudonym</th>
<th>Gender</th>
<th>TOEIC Scores</th>
<th>L2 WTC (dyadic)</th>
<th>Personality (Extraversion)</th>
<th>Age</th>
<th>Year of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yukari</td>
<td>F</td>
<td>695</td>
<td>64</td>
<td>6</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Mikki</td>
<td>F</td>
<td>645</td>
<td>63</td>
<td>4</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Akie</td>
<td>F</td>
<td>595</td>
<td>60</td>
<td>5</td>
<td>20</td>
<td>2nd</td>
</tr>
<tr>
<td>Yuki</td>
<td>F</td>
<td>565</td>
<td>53</td>
<td>4.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Tomomi</td>
<td>F</td>
<td>540</td>
<td>61</td>
<td>5.5</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>Yoko</td>
<td>F</td>
<td>516</td>
<td>48</td>
<td>5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Misako</td>
<td>F</td>
<td>485</td>
<td>54</td>
<td>5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Yukiko</td>
<td>F</td>
<td>445</td>
<td>41</td>
<td>6</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Akanori</td>
<td>M</td>
<td>610</td>
<td>58</td>
<td>1.5</td>
<td>19</td>
<td>2nd</td>
</tr>
<tr>
<td>Hiro</td>
<td>M</td>
<td>560</td>
<td>60</td>
<td>5</td>
<td>20</td>
<td>3rd</td>
</tr>
<tr>
<td>AVG.</td>
<td></td>
<td>565.6</td>
<td>56.2</td>
<td>4.75</td>
<td>19.6</td>
<td></td>
</tr>
</tbody>
</table>