<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki university’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
Effect of anti-angiogenesis induced by chemotherapeutic monotherapy, chemotherapeutic/bisphosphonate combination therapy and anti-VEGFA mAb therapy on tooth extraction socket healing in mice

Yuri Akita¹, Shinichiro Kuroshima¹,², *, Kazunori Nakajima¹, Hiroki Hayano¹, Riho Kanai¹, Muneteru Sasaki¹, Takashi Sawase¹

¹ Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
² Oral & Maxillofacial Implant Center, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan

Yuri Akita and Shinichiro Kuroshima contributed equally to this work.

Corresponding author and person to whom reprints should be addressed:
Shinichiro Kuroshima, D.D.S, Ph.D
Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan.
Oral & Maxillofacial Implant Center, Nagasaki University Hospital, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan.
Phone: +81-95-819-7685.
Fax: +81-95-819-7689.
e-mail: kuroshima@nagasaki-u.ac.jp

Keywords: bisphosphonate, chemotherapy, blood vessels, osteonecrosis of the jaw, angiogenesis
Abstract

Osteonecrosis of the jaw (ONJ), which is a rare but severe adverse effect, mainly occurs in oncology patients receiving chemotherapeutic agents and bisphosphonates. However, the combined impact of chemotherapy and bisphosphonates on wound healing after tooth extraction remains unknown. The aim of this study was to determine the precise etiology of ONJ induced by chemotherapy and bisphosphonate combination therapy. Mice received zoledronate (ZA) monotherapy, cyclophosphamide (CY) monotherapy, or CY/ZA combination therapy. The maxillary first molars were extracted 3 weeks after the initiation of drug treatment. Moreover, anti-vascular endothelial growth factor A (VEGFA) monoclonal antibody (mAb) was administered once every 2 days just after tooth extraction for 2 weeks. Soft and hard tissue wound healing were evaluated 2 and 4 weeks post-extraction using histomorphometry, microcomputed tomography, and immunohistochemistry. ZA monotherapy did not induce impaired oral wound healing and ONJ-like lesions 2 and 4 weeks post-extraction, respectively. Tooth extraction socket healing worsened with severe anti-angiogenesis by CY monotherapy and CY/ZA combination therapy 2 weeks post-extraction. However, CY monotherapy rarely induced ONJ-like lesions with severe angiogenesis suppression, whereas CY/ZA combination therapy frequently induced ONJ-like lesions with severe angiogenesis inhibition 4 weeks post-extraction. Interestingly, anti-VEGFA mAb therapy delayed osseous wound healing with normal soft tissue wound healing of tooth extraction sockets, although this therapy significantly suppressed blood vessel formation. Our findings suggest that anti-angiogenesis alone is not the main cause of ONJ-like lesions induced by CY/ZA combination therapy. The combination of suppressed osteoclasts and anti-angiogenesis, in addition to other risk factors such as chemotherapy, may contribute to the development of ONJ.
Introduction

Osteonecrosis of the jaw (ONJ), which was first reported as “avascular necrosis of the jaws” [1], is a rare but severe adverse effect observed in patients taking antiresorptive drugs such as bisphosphonates and anti-receptor activator of nuclear factor kappa-B ligand antibody (denosumab) [2,3]. Recently, medication-related ONJ has been proposed in place of antiresorptive-related ONJ since anti-angiogenic agents such as bevacizumab also induced ONJ in oncology patients, although these patients have other risk factors such as chemotherapy and steroid therapy use [2]. ONJ significantly increases the Oral Health Impact Profile, resulting in a decreased patient oral health-related quality of life due to difficulty in receiving optimal dental treatments [4]. Approximately 70% of ONJ patients have received tooth extractions [3]. Tooth extraction injures soft and hard tissues with open wounds. Normally, wound repair occurs with new bone formation in extraction sockets and wound closure by soft tissue regeneration. Blood vessel formation is an essential factor in recruiting immune cells including polymorphonuclear cells (PMNs) and supporting bone formation and soft tissue reconstruction during healing processes. Several vascular endothelial growth factors (VEGFs), which are produced by macrophages, dendritic cells, fibroblasts, osteoblasts, and endothelial cells, are required for angiogenesis in wounds. Studies have reported that bisphosphonates inhibit blood vessel formation [5,6], suggesting that angiogenesis suppression by bisphosphonates is a pathoetiology of ONJ. However, some reports have indicated that bisphosphonate therapy does not suppress angiogenesis in oral wounds [7-10]. Moreover, it has not been reported that denosumab inhibits angiogenesis [3], although both bisphosphonates and denosumab cause the same pathophysiology in ONJ. Therefore, it remains controversial whether angiogenesis suppression is a crucial factor in inducing ONJ following tooth extraction.

ONJ primarily occurs in malignant patients taking not only antiresorptive drugs or anti-angiogenic agents, but also one or more chemotherapeutic drugs [3]. Chemotherapy, which has been widely used for malignancies, is one of the risk factors for ONJ [2]. In particular, ONJ
develops most commonly in multiple myeloma patients who receive alkylating agents and zoledronate combination therapy [11]. Alkylating agents, which are prescribed for multiple myeloma, bind to DNA and prevent proper DNA replication, resulting in cancer cell death [12]. Alkylating agents also induce adverse effects because they cause serious damage in both cancer cells and normal cells. However, whether alkylating agents affect soft and hard tissue wound healing following tooth extraction remains unknown. Moreover, the mechanisms by which antiresorptive and chemotherapeutic combination therapy contribute to the development of ONJ remain unclear, although many clinical studies have reported that chemotherapeutic agents and bisphosphonate and/or denosumab combination therapies induced ONJ following tooth extraction. Therefore, the aim of this study was to investigate the combined effect of chemotherapy and bisphosphonate therapy on soft and hard tissue wound healing following tooth extraction to elucidate the pathophysiology of ONJ.

Materials and methods

Animals, tooth extraction, and bisphosphonate therapy and chemotherapy

Male C57BL/6J mice (9-week-old; CLEA Japan Inc., Osaka, Japan) were randomly divided into three treatment groups and one control group (four groups total). Mice were subcutaneously administered zoledronate (Zometa, Novartis, Stein, Switzerland) at 0.05 mg/kg twice a week (designated as ZA, n = 7) [8]. Mice were intraperitoneally injected with 150 mg/kg of cyclophosphamide (C7397, Sigma-Aldrich, St. Louis, MO, USA) twice a week before tooth extraction and once a week post-extraction (designated as CY, n = 7). Mice received combination treatment of intraperitoneal CY (150 mg/kg twice a week before extraction and once a week post-extraction) and subcutaneous ZA (0.05 mg/kg twice a week) (designated as CY/ZA, n = 7). Saline was used as a control (vehicle control; designated as VC, n = 7). Three weeks after the initiation of drug therapy, both maxillary first molars were extracted. Mice were euthanized 2 and 4 weeks post-
Animal care and experimental procedures were performed in accordance with the Guidelines for Animal Experimentation of Nagasaki University, with approval from the Ethics Committee for Animal Research.

Anti-vascular endothelial growth factor A (VEGFA) monoclonal antibody (mAb) therapy

To investigate the net effect of anti-angiogenesis on tooth extraction wound healing, anti-VEGFA mAb therapy was carried out. Female C57BL/6J mice (8-week-old; CLEA Japan Inc.) were used. Mice (n = 4) received 100 μg of anti-VEGFA mAb (clone 2G11-2A05; BioLegend, San Diego, CA, USA) intraperitoneally once every 2 days for 2 weeks [13] just after extraction of both maxillary first molars. Intraperitoneal injection of an equivalent volume of rat IgG2a (BLD-400516; BioLegend, San Diego, CA, USA) was also performed as a control (n = 4). Euthanasia was performed 2 weeks post-extraction.

Microcomputed tomography (microCT)

Right maxillae were dissected 2 and 4 weeks after tooth extraction, fixed in 10% neutral buffered formalin for 24 hours, and visualized using microCT at 20-μm voxel resolution and 90-kV tube voltage (R_mCT2, Rigaku Co. Ltd., Tokyo, Japan) [14]. Extraction sockets were segmented and reconstructed using a semi-manual contouring method [15] with TRI/3D-Bon (Ratoc System Engineering, Tokyo, Japan). In tooth extraction sockets, bone fill of sockets (bone volume/tissue volume, BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and bone mineral density (BMD) were semi-automatically measured in accordance with the guidelines for assessment of bone microstructures using microCT [16].

Histomorphometric analysis of oral wound healing

Hematoxylin and eosin (H-E) staining was performed using a standard staining protocol to evaluate soft and hard tissues. Left maxillae were dissected 2 and 4 weeks after tooth extraction and fixed in 10% neutral formalin at euthanasia. Maxillary bones were demineralized in 10%
EDTA, paraffin embedded, and sectioned at 5-μm thickness in serial sagittal sections. Tartrate-resistant acid phosphatase (TRAP) staining and Masson’s trichrome staining were conducted to visualize osteoclasts and collagen fibers, respectively, with commercial kits following the manufacturer’s instructions (HT15 and 386A, respectively; Sigma-Aldrich). The bones in tooth extractions were then histomorphometrically assessed to detect the following: 1) osteoclast number per bone surface (osteoclast perimeter) (OC.N/BS, #/mm); 2) living bone area (%); 3) necrotic bone area (%); 4) number of empty lacunae (#/mm²); 5) osteocyte numbers (#/mm²); 6) collagen area (%); and 7) PMN infiltration (#/mm²). Collagen fibers were quantified in the connective tissue [area of interest (AOI), 200 μm × 500 μm] above extraction sockets. PMN infiltration was assessed by quantifying the number of inflammatory cells in the connective tissue within 100 μm of the bone surface (AOI, 100 μm × 500 μm). Necrotic bone was defined as the portion of bone in which there was ≥10 adjacent empty or pyknotic osteocyte lacunae, since such bone is not vital [8,17].

Immunohistochemical analyses

Immunofluorescent staining was performed to visualize blood vessels as follows. Sections were fixed, dehydrated, subjected to antigen retrieval, and blocked with nonspecific protein. Sections were then incubated with a CD31 rabbit anti-mouse primary antibody (1:100 dilution; ab56299, Abcam, Cambridge, MA, USA) overnight at 4°C. Fluorescent-conjugated goat anti-rat Alexa Flour 594 (1:200 dilution; Invitrogen, Carlsbad, CA, USA) was used as the secondary antibody. VECTASHIELD Antifade Mounting Medium with DAPI (H-1200 Vector Laboratories, Burlingame, CA, USA) was also used. Stained sections were visualized using immunofluorescent microscopy (Axio Scope A1, Zeiss, Oberkochen, Germany). Blood vessel numbers and areas were quantitatively analyzed by semiautomatically counting the number and area of vessels in the connective tissue above extraction sockets (AOI, 200 μm × 500 μm) to evaluate blood vessel formation, as previously described [7-9].

Statistics
Statistical analyses were blindly conducted. The Shapiro-Wilk test was performed to assess normality. In the comparison of four groups (VC, CY, ZA, and CY/ZA), one-way analysis of variance and the Kruskal-Wallis test were used for parametric and non-parametric data, respectively. In the comparison between IgG2a and mAb groups, Student’s t-test and the Mann-Whitney U-test were used for parametric and non-parametric data, respectively. All statistical analyses were conducted using Systat 12 (Systat Software, Chicago, IL, USA). An α-level of 0.05 was used for statistical significance. All data are presented as mean ± SEM.

Results

Effect of administered drugs on gross wound healing in tooth extraction sockets

Open wounds were observed in CY (9 of 14 extraction sockets) and CY/ZA (14 of 14 extraction sockets) 2 weeks post-extraction (Fig. 2a, b). Indeed, CY monotherapy and CY/ZA combination therapy significantly increased the open wound area in tooth extraction sockets, although the wound area was significantly larger in CY/ZA compared with CY (Fig. 2c). Conversely, open wounds were frequently observed in CY/ZA (13 of 14 extraction sockets) 4 weeks post-extraction, whereas wounds were almost covered by epithelium in CY (1 of 14 extraction sockets) (Fig. 2d, e). The open wound area was significantly larger in CY/ZA compared with all other groups 4 weeks post-extraction (Fig. 2f). Sustained exposed bones with open wounds for 8 successive weeks is one of the definitions of ONJ [2,3]. Hence, exposed bones with open wounds for 4 successive weeks were designated as ONJ-like lesions in this study. Exposed bones with open wounds for 2 weeks were designated as impaired wound healing of tooth extraction in the present study.

Effect of administered drugs on osseous wound healing in tooth extraction sockets

Osseous wound healing of tooth extraction sockets seemed to be impaired in CY and CY/ZA, but not VC and ZA 2 weeks post-extraction (Fig. 3a). Indeed, CY monotherapy and
CY/ZA combination therapy significantly decreased bone fills in tooth extraction sockets with decreased Tb.N, decreased Tb.Th and increased Tb.Sp, as compared with VC and ZA (Fig. 3b–e). BMD in CY was significantly decreased compared with VC, while BMD in CY/ZA was the same as VC (Fig. 3f).

Osseous wound healing of tooth extraction sockets appeared to be suppressed in CY and CY/ZA 4 weeks post-extraction (Fig. 3g). CY/ZA combination therapy significantly suppressed bone fill in tooth extraction sockets with decreased Tb.N, decreased Tb.Th, increased Tb.Sp, and decreased BMD as compared with all other groups (Fig. 3h–l). CY monotherapy significantly induced impaired osseous wound healing compared with VC and ZA. Osseous wound healing in CY/ZA was significantly more impaired than that in CY (Fig. 3h–l).

Effect of administered drugs on soft and hard tissue wound healing 2 weeks post-extraction

Localized and extended open wounds were grossly detected in CY and CA/ZA, respectively (Fig. 4a). ZA monotherapy and CY monotherapy for 5 weeks significantly suppressed osteoclast numbers, even when CY/ZA combination therapy was administered (Fig. 4a, b). ZA monotherapy, CY monotherapy, and CY/ZA combination therapy significantly decreased the living bone area compared with VC (Fig. 4c). CY monotherapy and CY/ZA combination therapy significantly increased the necrotic bone area and the number of empty lacunae compared with VC and ZA monotherapy (Fig. 4d, e). Additionally, CY monotherapy and CY/ZA combination therapy significantly decreased the number of osteocytes compared with VC (Fig. 4f). CY/ZA combination therapy significantly suppressed collagen production compared with all other groups (Fig. 4g, h).

CY monotherapy and CY/ZA combination therapy significantly increased PMN infiltration, although PMN infiltration in CY/ZA was severer than that in CY (Fig. 4g, i).

Effect of administered drugs on soft and hard tissue wound healing 4 weeks post-extraction

Open wounds were frequently observed following CY/ZA combination therapy but not VC, ZA monotherapy, or CY monotherapy (Fig. 5a). ZA administration significantly suppressed
osteoclast numbers in tooth extraction sockets, irrespective of CY administration (Fig. 5a, b). However, ZA monotherapy did not change the living bone area compared with VC (Fig. 5c). CY/ZA combination therapy and CY monotherapy significantly decreased the living bone area in extraction sockets compared with VC and ZA monotherapy (Fig. 5c). CY/ZA combination therapy significantly increased the necrotic bone area compared with all other therapies (Fig. 5d). The number of empty lacunae was the same between VC and ZA monotherapy, however, CY monotherapy and CY/ZA combination therapy significantly increased the number of empty lacunae compared with VC and ZA monotherapy (Fig. 5e). Additionally, CY monotherapy and CY/ZA combination therapy significantly decreased the number of osteocytes compared with VC (Fig 5f). CY/ZA combination therapy significantly decreased collagen production and increased PMN infiltration in soft tissues of tooth extraction sockets compared with VC, ZA monotherapy, and CY monotherapy (Fig. 5g–i).

Effect of administered drugs on blood vessels in the connective tissue of tooth extraction sockets 2 and 4 weeks post-extraction

Blood vessel formation was measured to compare the effect of CY monotherapy and CY/ZA combination therapy. Surprisingly, CY monotherapy and CY/ZA combination therapy significantly suppressed the number and area of blood vessels as compared with VC and ZA monotherapy 2 weeks post-extraction (Fig. 6a–c). Interestingly, these anti-angiogenic effects by CY monotherapy and CY/ZA combination therapy were significantly sustained until 4 weeks post-extraction (Fig. 6d–f).

Effect of anti-VEGFA mAb therapy on wound healing in tooth extraction sockets

No open wounds were observed in both IgG2a and anti-VEGFA mAb 2 weeks post-extraction (Fig. 7b, c). Anti-VEGFA mAb therapy significantly delayed bone formation of tooth extraction sockets compared with IgG2a therapy, although the necrotic bone area and numbers of empty lacunae and osteocytes were the same between groups (Fig. 7d–h). Conversely, collagen
production was the same between groups, although PMN infiltration was significantly increased in anti-VEGFA mAb compared with IgG2a (Fig.7i–k). Anti-VEGFA mAb therapy significantly suppressed the number of blood vessels without alteration of vessel surfaces (Fig. 7l–n).

Discussion

In the present study, we demonstrated that: 1) severe angiogenesis suppression by alkylating chemotherapeutic agent CY alone is not the definitive cause of ONJ-like lesions, although CY monotherapy delayed osseous wound healing; 2) CY/ZA combination therapy frequently induced ONJ-like lesions, although CY/ZA combination therapy also significantly inhibited angiogenesis in the soft tissue of tooth extraction sockets; and 3) anti-VEGFA mAb therapy delayed osseous wound healing but not soft tissue healing of tooth extraction sockets.

Chemotherapeutic agents, which are pivotal drugs for the treatment of malignancies, have adverse effects on normal cells. The alkylating agent CY constitutes a major class of front-line chemotherapeutic agents that inflict cytotoxic DNA damage as their mode of action. CY damages both cancer cells and normal cells by inhibiting DNA replication [18]. To our knowledge, no reports have focused on the effect of CY monotherapy on wound healing following tooth extraction. Therefore, in this study, we investigated the effect of CY monotherapy on hard and soft tissue wound healing following tooth extraction. CY monotherapy influenced osteoclasts and osteocytes with decreased bone fill and decreased BMD after CY administration. This finding was partially in accordance with that of a previous study, which demonstrated that weekly 20 mg/kg CY injections for more than 5 weeks significantly decreased osteoblast and osteoclast numbers with bone loss in rat mandibular condyles [19]. CY induces myelosuppression [20], suggesting that immune responses may be influenced. Bacteremia may occur in up to 96% of cases following bacterial invasion into extraction sockets [21,22]. Elimination of invasive bacteria in extraction sockets supports wound closure. Network development of blood vessels in wound sites plays an important
role in accumulating neutrophils, osteoclast precursors, monocyte-macrophage lineages, and PMNs
during wound healing [23]. Neutrophils, PMNs, and monocyte-macrophage lineages fight invading
bacteria within soft tissue wounds, resulting in soft tissue regeneration [24,25]. In the current study,
the influence of CY on PMN infiltration and collagen production in the soft tissue of extraction
sockets decreased in a time-dependent manner, although CY significantly suppressed angiogenesis,
irrespective of administration duration. CY has been demonstrated to inhibit angiogenesis by
preventing endothelial cell growth through suppressed basic fibroblast growth factor expression in
vitro and in vivo [26]. Conversely, a recent study showed that CY metronomic chemotherapy,
which suppressed only angiogenesis without immune suppression, has been developed for use in
oncology patients [27,28]. Moreover, CY enhanced the recruitment of immune cells such as PMNs
and macrophages via high mobility group box 1 protein [29]. Therefore, our findings suggested that
CY monotherapy may specifically inhibit blood vessel formation, but not affect immune cells such
as PMNs. As a result, CY monotherapy rarely induced ONJ-like lesions with severe angiogenesis
suppression, although this therapy induced impaired osseous wound healing 2 and 4 weeks post-
extraction.

ONJ develops most commonly in malignant patients taking intravenous bisphosphonates
following tooth extraction with incidences ranging 1.6–14.8% [3]. Malignant patients may take
multiple chemotherapeutic agents simultaneously. Thus, we investigated the effect of ZA and CY
combination therapy on tooth extraction socket healing. First, the effect of ZA monotherapy was
examined. ZA is usually administered intravenously in humans. It has been demonstrated that
subcutaneous injection of ZA (0.1 mg/kg at 5 times for 20 days) improved the survival rate without
reducing the number of metastases in a murine prostate cancer bone metastasis model. This therapy
also significantly increased trabecular bone with the preservation of bone structures in long bones
[30]. These effects of subcutaneous ZA injection on tumor-bearing mice are comparable to those of
intravenous ZA injection. Hence, in this study, subcutaneous injection of ZA was applied to
C57B6/J mice. Interestingly, ZA monotherapy did not induce ONJ-like lesions with open wounds, although ZA monotherapy affected soft and hard tissue wound healing 2 weeks, but not 4 weeks, post-extraction. ZA did not affect the number of blood vessels, regardless of administration duration. We previously demonstrated that ZA monotherapy did not suppress angiogenesis in the soft tissue of extraction sockets during wound healing processes [8,9]. Thus, the present findings are in agreement with our previous findings. Conversely, ZA has been demonstrated to have a negative effect on cultured oral epithelial cells and fibroblasts [31]. Additionally, ZA had a negative influence on cell viability of human umbilical vascular endothelial cells [32]. Short-term ZA monotherapy (12 days) inhibited tooth extraction socket healing with inhibited angiogenesis 5 days post-extraction [33], although the most recent study has demonstrated that subcutaneous alendronate monotherapy did not suppress angiogenesis with normal wound healing 3, 5, 7, 10, and 21 days post-extraction [10]. International task force on ONJ also agrees with no anti-angiogenesis with animal study using bisphosphonates [2]. However, ZA monotherapy actually suppressed angiogenesis in cancer patients [34] and ONJ mainly occurs in malignant patients taking ZA. Accordingly, ZA-induced anti-angiogenesis may not be an exact causative factor of BRONJ in human, although inhibition of blood vessel formation by ZA monotherapy negatively affects the early phase of wound healing processes following tooth extraction. Anti-angiogenesis induced by ZA monotherapy may specifically occur at malignant sites but not at wound sites, such as soft tissues of extraction sockets.

Next, we evaluated the effect of CY and ZA combination therapy. The effects of CY/ZA combination therapy on tooth extraction wound healing significantly differed from that of ZA monotherapy 2 and 4 weeks post-extraction. CY/ZA combination therapy severely impaired hard tissue healing. Surprisingly, only 20% of bone fill in tooth extraction sockets was observed following CY/ZA combination therapy even 4 weeks post-extraction. Open wounds frequently remained with severely reduced collagen production and significant PMNs infiltration in soft tissue.
wounds. As a result, CY/ZA combination therapy severely influenced soft and hard tissues of extraction sockets, resulting in frequent induction of ONJ-like lesions. Moreover, angiogenesis inhibition following CY monotherapy and CY/ZA combination therapy was almost the same. Thus, our findings demonstrated that both CY and ZA are requisite for the development of ONJ-like lesions in mice.

Finally, to address whether anti-angiogenesis is a critical factor in wound healing following tooth extraction, we investigated the net effect of anti-angiogenesis on tooth extraction socket healing at the early phase of wound healing processes using anti-VEGFA mAb. Blood vessels are required for the recruitment of immune cells to tooth extraction sites, and bone formation and soft tissue regeneration in the tooth extraction sockets. Hence, anti-VEGFA mAb therapy delayed osseous wound healing of tooth extraction sockets. Other factors except for anti-angiogenesis may induce normal soft tissue healing of tooth extraction sockets without inhibition of collagen production, although which factors positively affect soft tissue healing remains unknown in the present study. It has been reported that ONJ occurred in cancer patients treated with an anti-angiogenic agent, bevacizumab, although these patients already had many other risk factors for ONJ such as the use of chemotherapeutic drugs and abnormal immune responses [35]. This report concluded that the incidence of ONJ in metastatic breast cancer patients treated with bisphosphonates was not increased even when bevacizumab was used in combination with bisphosphonate therapies [35]. A recent study showed that suppression of blood vessel formation may not be a crucial factor in the development of ONJ [36]. Additionally, normal angiogenesis has been reported in most histological studies of bisphosphonate-related ONJ [37,38]. It has not been reported whether denosumab has anti-angiogenic effects on tooth extraction sockets. Hence, our findings and accumulating scientific data support the finding that suppressed angiogenesis alone is not a definitive cause of ONJ, although an anti-angiogenic effect may negatively influence osseous wound healing of tooth extraction. It has been reported that administration duration of anti-
angiogenesis agents such as bevacizumab was relatively long in ONJ patients (e.g., one report was 6 months, another report was 2 years) [39,40]. Hence, further animal studies investigating the effects of long-term anti-VEGFA mAb therapy on tooth extraction socket healing are required to clearly manifest the relationship between anti-angiogenesis and BRONJ in mice.

In summary, we demonstrated that suppressed angiogenesis did not induce ONJ-like lesions in mice. The combination of osteoclast suppression and angiogenesis inhibition, in addition to other factors such as the use of chemotherapeutic drugs and compromised immune reactions, may be essential for the development of ONJ. Moreover, ZA monotherapy did not evoke ONJ-like lesions in mice, unlike in humans, indicating that caution should be exercised during the evaluation of impaired wound healing when using experimental rodent models.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Nos. 25870523 and 15K11258.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Figure legends

Fig. 1 Experimental design. (a) Time schedules for ZA monotherapy, CY monotherapy, and CY/ZA combination therapy. Tooth extraction was performed 3 weeks after the onset of drug treatments. Euthanasia was conducted 2 and 4 weeks post-extraction. VC: vehicle control, CY: cyclophosphamide, ZA: zoledronate. (b) Both maxillary first molars (M1) were selected as tooth extraction sites. M2 and M3 indicate second and third molars, respectively.

Fig. 2 Effect of administered drugs on gross wound healing in tooth extraction sockets. (a) Representative gross wound healing 2 weeks post-extraction. Black dotted lines indicate second (M2) and third molars (M3). Red dotted lines indicate the outlines of wounds. (b) No open wounds were observed in VC and ZA. Open wounds were observed in 64.2% of CY and 100% of CY/ZA. (c) Increased wound areas were observed in CY and CY/ZA compared with VC and ZA, although the wound area in CY/ZA was significantly larger than that in CY. (d) Representative gross wound healing 4 weeks post-extraction. Black dotted lines indicate second (M2) and third molars (M3). Red dotted lines indicate the outlines of wounds. (e) No open wounds were observed in VC and ZA.
Open wounds were noted in only 7.14% of CY and 100% of CY/ZA. (f) The wound area in CY/ZA was significantly larger than that in all other groups. n = 7/group; *, p < 0.05, ***, p < 0.001, compared with VC. †, p < 0.05, ††, p < 0.01, †††, p < 0.001, compared with other groups except for VC.

Fig. 3 Effect of administered drugs on osseous wound healing 2 and 4 weeks post-extraction. (a) Representative cross-sectional microcomputed tomography (microCT) images of tooth extraction sockets 2 weeks post-extraction. M1 and M2 indicate first molars and second molars, respectively. (b) Bone fill of tooth extraction sockets in CY and CY/ZA was significantly impaired compared with VC and ZA. (c) Trabecular number (Tb.N) in CY and CY/ZA was significantly decreased compared with VC and ZA. (d) Trabecular thickness (Tb.Th) was significantly smaller in CY compared with VC and ZA. Tb.Th was smaller in CY/ZA compared with VC without significant difference. (e) Trabecular separation (Tb.Sp) was significantly greater in CY and CY/ZA compared with VC and ZA. (l) Increased bone mineral density (BMD) was observed in ZA compared with other groups. Decreased BMD was noted in CY and CY/ZA compared with VC. (g) Representative cross-sectional microCT images of tooth extraction sockets 4 weeks post-extraction. Yellow dotted lines indicate the mesial and distal roots of tooth extraction sockets. (h) Bone fill of tooth extraction sockets in CY and CY/ZA was significantly impaired compared with VC. Significantly greater bone fill was noted in ZA compared with VC. (i) Tb.N in ZA, CY, and CY/ZA was significantly decreased compared with VC. (j) Tb.Th was significantly smaller in CY/ZA compared with VC, whereas Tb.Th was greater in ZA compared with VC. (k) Tb.Sp was significantly greater in CY and CY/ZA compared with VC and ZA. (l) Increased BMD was observed in ZA compared with VC. Decreased BMD was noted in CY and CY/ZA compared with VC. n = 7/group; *, p < 0.05, **, p < 0.01, ***, p < 0.001, compared with VC. †, p < 0.05, ††, p < 0.01, †††, p < 0.001, compared with other groups except for VC.
Fig. 4 Effect of administered drugs on tooth extraction socket healing 2 weeks post-extraction. (a) Representative sagittal H-E- and TRAP-stained images of tooth extraction sockets. Bar: 200 μm and 50 μm, respectively. In H-E-stained images, localized and extended open wounds were grossly observed in CY and CY/ZA, respectively. In TRAP-stained images, black arrowheads indicate osteoclasts on bone surfaces. (b) Osteoclast numbers were significantly decreased in ZA, CY, and CY/ZA compared with VC. (c) The living bone area was significantly decreased in CY and CY/ZA compared with VC and ZA. (d) The necrotic bone area was significantly increased in CY and CY/ZA compared with VC and ZA. (e) The number of empty lacunae was significantly increased in CY and CY/ZA compared with VC and ZA. (f) The number of osteocytes was significantly decreased in CY and CY/ZA compared with VC and ZA. (g) Representative trichrome-stained images of tooth extraction sockets. Bar: 200 μm. Yellow dotted lines indicate the border between alveolar bone and connective tissues. (h) The collagen area was significantly decreased in CY/ZA compared with all other groups. (i) PMN infiltration in CY and CY/ZA was significantly decreased compared with that in VC and ZA. Significantly more PMN infiltration was observed in CY/ZA compared with CY. n = 7/group; *, p < 0.05, **, p < 0.01, ***, p < 0.001, compared with VC. †, p < 0.05, ††, p < 0.01, †††, p < 0.001, compared with other groups except for VC.

Fig. 5 Effect of administered drugs on tooth extraction socket healing 4 weeks post-extraction. (a) Representative sagittal H-E- and TRAP-stained images of tooth extraction sockets. Bar: 200 μm and 50 μm, respectively. In H-E-stained images, extended open wounds were grossly observed in CY/ZA. In TRAP-stained images, black arrowheads indicate osteoclasts on bone surfaces. (b) Osteoclast numbers were significantly decreased in ZA and CY/ZA compared with VC and CY. (c) The living bone area was significantly decreased in CY and CY/ZA compared with VC and ZA. (d) The necrotic bone area was significantly increased in CY/ZA compared with all other groups. (e) The number of empty lacunae was significantly increased in CY and CY/ZA compared with VC. (f)
The number of osteocytes was significantly decreased in CY and CY/ZA compared with VC. (g) Representative trichrome-stained images of tooth extraction sockets. Bar: 200 μm. Yellow dotted lines indicate the border between alveolar bone and connective tissues. (h) Collagen area was significantly decreased in CY/ZA compared with all other groups. (i) A significantly greater number of PMNs were observed in CY/ZA compared with all other groups. n = 7/group; *, p < 0.05, ***, p < 0.001, compared with VC. ††, p < 0.01, †††, p < 0.001, compared with other groups except for VC.

Fig. 6 Effect of administered drugs on the formation of blood vessels in soft tissue wounds. (a) Representative immunostaining using anti-CD31 antibody 2 weeks post-extraction. Nuclei were stained with DAPI. White arrowheads indicate CD31-positive vessels. Ep: epithelium, Ct: connective tissue, Ab: alveolar bone, Bar: 100 μm. (b) The number of blood vessels was significantly decreased in CY and CY/ZA compared with VC and ZA. The number of blood vessels was the same between CY and CY/ZA. (c) Vessel surface was significantly decreased in ZA, CY, and CY/ZA compared with VC. (d) Representative immunostaining using anti-CD31 antibody 4 weeks post-extraction. Nuclei were stained with DAPI. White arrowheads indicate CD31-positive vessels. Bar: 100 μm. (e) The number of blood vessels was the same between VC and ZA but significantly decreased in CY and CY/ZA compared with VC and ZA. (f) Vessel area was the same between VC and ZA but significantly smaller in CY and CY/ZA compared with VC and ZA. n = 7/group; *, p < 0.05, **, p < 0.01, ***, p < 0.001, compared with VC. †, p < 0.05, †††, p < 0.001, compared with other groups except for VC.

Fig. 7 Effect of anti-VEGFA mAb on tooth extraction socket healing. (a) Time schedule for IgG2a and anti-VEGFA mAb therapy. IgG2a and mAb therapies were performed once every 2 days just after tooth extraction for 2 weeks. (b) Representative gross wound healing 2 weeks post-extraction. M2 and M3 indicate the second and third molars, respectively. (c) No open wounds were observed.
following both IgG2a and mAb therapies. (d) Representative H-E-stained images of tooth extraction sockets. Open wounds and necrotic bone were not grossly observed. Bar: 200 μm. (e) The living bone area was significantly decreased in mAb compared with IgG2a. (f-h) The necrotic bone area, number of empty lacunae, and osteocyte number were the same between IgG2a and mAb. (i) Representative trichrome-stained images of tooth extraction sockets. Yellow dotted lines indicate the border between alveolar bone and connective tissues. Bar: 200 μm. (j) Collagen production was the same between IgG2a and mAb. (k) Significant PMN infiltration was observed in mAb compared with IgG2a. (l) Representative immunostaining for CD31. Nuclei were stained with DAPI. White arrowheads indicate CD31-positive vessels. Bar: 100 μm. (m) The number of blood vessels was significantly decreased in mAb compared with IgG2a. (n) Vessel surface was similar between IgG2a and mAb. n = 4/group; **, p < 0.01.
FIG. 1.

(a) Timeline of treatments and procedures:
- VC (Saline) at 0 weeks
- ZA (0.1 mg/kg/w) at 3 weeks
- CY (300 mg/kg/w) at 5 weeks
- CY/ZA at 7 weeks (wks)
- Tooth extraction at 3 weeks
- Euthanasia at 5 weeks
- Euthanasia at 7 weeks

(b) Diagram of dental structure with labels:
- M1, M2, M3 (molar teeth)
- Anterior
- Posterior

Legend:
- R: Right side
- L: Left side
FIG. 3.