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Abstract 28 

 29 

To reveal tetrodotoxin (TTX) sensing and action of TTX in central nervous system (CNS) of tiger 30 

puffer Takifugu rubripes juveniles, we conducted transcriptome analysis by next-generation 31 

sequencing for the olfactory and the brain of non-toxic cultured juveniles which were sensed and 32 

administered TTX. Sixty seven million reads from the nasal region (olfactory epithelium and skin) 33 

and the brain of each of three individuals of the control, TTX-sensed and TTX-administered juveniles 34 

were assembled into 153,958 contigs. A mapping of raw reads from the each sample onto the 35 

nucleotide sequences of predicted transcripts in T. rubripes genome (FUGU version 4) and the de novo 36 

assembled contigs, conducted to investigate their frequency of expression, revealed that the expression 37 

of 21 and 81 known genes significantly changed in TTX-sensed and TTX-administered juveniles in 38 

comparison with control juveniles, respectively. These genes included those related to feeding 39 

regulation and reward system, indicate that TTX ingestion of T. rubripes juveniles is controlled at 40 

feeding center in brain and T. rubripes may sense TTX as a reward, and accumulated TTX will directly 41 

act on CNS to adjust TTX ingestion. 42 

 43 

Keywords Takifugu rubripes • Tetrodotoxin (TTX) • Central nervous system • RNA-seq • Feeding 44 

center • Reward system  45 



Introduction 46 

 47 

Marine pufferfish of the genus Takifugu contain tetrodotoxin (TTX) which is one type of potent 48 

neurotoxin specific to voltage-gated sodium channels of excitable membranes of muscle and nerve 49 

tissues [1-3]. Matsumura [4] found that the toxin levels in embryos of grass puffer Takifugu niphobles 50 

increase from fertilization to hatching and concluded that TTX is produced by pufferfish. Other studies 51 

claimed that pufferfish accumulates TTX through food chain [3, 5], that is originally produced by 52 

marine bacteria belonging to the genera Vibrio and Shewanella [6-9]. The hypothesis that TTX in 53 

pufferfish is exogenous and is derived via the food chain is now widely accepted, because this 54 

hypothesis was supported by the fact that artificially raised tiger puffer Takifugu rubripes become non-55 

toxic when fed with non-toxic diets in the environment where the invasion of TTX-bearing organisms 56 

was eliminated [10, 11], and such non-toxic T. rubripes are attracted to TTX [12, 13] and become toxic 57 

when they were fed with TTX-containing diets [14, 15, 16]. 58 

 Non-toxic fishes can detect TTX at very low levels by gustatory organ [17]. Once non-toxic 59 

fishes ingest toxic eggs of pufferfish, they spit out pufferfish eggs immediately [18]. It was also 60 

confirmed that non-toxic fishes die even in trace amounts of TTX when administered directly into 61 

their bodies [19]. These evidences indicate that non-toxic fishes can recognize and avoid TTX as toxin. 62 

In contrast, T. rubripes detects TTX by olfactory organ, and actively ingests [13] and then accumulate 63 

high amounts of TTX [10]. Recently, several proteins implicated in the toxicity of pufferfish have been 64 

reported. Skeletal muscle voltage-gated Na+ channel in pufferfish gain TTX resistance by amino acid 65 

substitutions in the P-loop region of the proteins [20-22]. Pufferfish saxitoxin and tetrodotoxin-binding 66 

proteins (PSTBPs) that bind to TTX and paralytic shellfish toxins were isolated from the plasma of 67 

panther puffer Takifugu pardalis and also found in the other Takifugu species [23, 24]. PSTBPs share 68 

high sequence homology (47 %) with a tributyltin-binding protein 2 (TBT-bp2) in Japanese flounder 69 

Paralichthys olivaceus [25], suggesting that PSTBPs originated in TBT-bp2s. These findings suggest 70 

that pufferfish become able to ingest TTX without recognizing as toxin through evolutional processes. 71 

 Generally liver and ovary of wild T. rubripes adults are strongly toxic [26]. However, in 72 



juvenile stage, TTX is detected not only in liver but also in skin and brain of wild T. rubripes [16, 27]. 73 

It was further confirmed that TTX was transferred to skin and brain when TTX was administered to 74 

cultured non-toxic T. rubripes juveniles [27]. Since predation is a major cause of mortality in T. 75 

rubripes juveniles [28-30], bearing of TTX in skin may be functional as predator defense for the 76 

juvenile pufferfish [16]. Therefore, pufferfish utilize TTX for its survival through evolutional 77 

processes and alter the recognition of TTX as toxin for taking TTX into their body. Accumulation of 78 

TTX in brain [27] suggests that TTX passed through blood-brain barrier and was transferred to the 79 

central nervous system (CNS) of T. rubripes juveniles. Brain membranes of T. pardalis are harder to 80 

bind to saxitoxin that has the same Na+ channel blocking function as TTX than corresponding 81 

membranes of rat same as skeletal muscle membranes including TTX-resistant Na+ channel [20]. Thus, 82 

TTX may be functional in brain of pufferfish without blocking Na+ channel. 83 

 Given these evidences, we hypothesized that T. rubripes juvenile senses TTX as a 84 

pharmacological agent and accumulated TTX is physiologically functional in CNS, and then some 85 

changes occur in the expression of genes associated with TTX sensing and action of TTX in CNS. 86 

Recently, next-generation sequencing technologies greatly improved the speed and efficiency of 87 

transcriptome analysis in many organisms including fishes [31] and the availability of the whole 88 

genome sequence of T. rubripes allowed us to use this technique. Thus, we conducted transcriptome 89 

analysis by next-generation sequencing for the olfactory and the brain of non-toxic cultured T. rubripes 90 

juveniles which were sensed and administered TTX. 91 

 92 

Materials and methods 93 

 94 

Experimental fish 95 

 96 

Non-toxic cultured T. rubripes juveniles (about 5 months old; body length, 11.0 ± 0.5 cm; body weight, 97 

37.7 ± 4.1 g; n = 150) were purchased from a private hatchery (Tawaki Suisan Corp., Kumamoto, 98 

Japan) and were transported to Research Center for Marine Invertebrates, National Research Institute 99 



of Fisheries and Environment of Inland Sea, Fisheries Research Agency, Momoshima, Hiroshima, 100 

Japan, in July 2014. The fish were fed with the commercial diets (Otohime EP3, Marubeni Nissin Feed 101 

Co., Ltd., Tokyo, Japan) in an aerated 5,000-l tank until TTX treatment. 102 

 103 

Purification of TTX 104 

 105 

TTX was extracted from the ovary of a wild-caught adult T. rubripes according to the method of Ikeda 106 

et al. [32] with a slight modification. The extract was partially purified with Bio-Gel P-2 column (Bio-107 

Rad Laboratories Inc., Herucles, CA, USA) and the absorbed TTX by the gel was eluted with 0.05 M 108 

acetic acid. TTX fraction was subjected to LC/MS analysis on an alliance LC/MS system equipped 109 

with a ZSpray MS 2000 detector (Waters, Milford, MA, USA) according to Nakashima et al. [33]. The 110 

amount of TTX (nanograms) determined by LC/MS was converted to mouse units (MU) based on the 111 

specific toxicity of TTX (220 ng/MU). Purified TTX was dried and frozen at -80°C until use. 112 

 113 

TTX-sensing and TTX-administration treatment to T. rubripes juveniles 114 

 115 

Preliminary tests [13, 27] elucidated that non-toxic cultured juveniles were generally attracted to TTX 116 

within 30 minutes of starting to smell TTX and intramuscularly administered TTX in the fish was 117 

transferred to brain at least 24 hours after administration [unpublished data]. Based on these results, 118 

the following methods were established. For TTX-sensing treatment, three non-toxic cultured 119 

juveniles were accommodated in an aerated 30 l tank filled with 20-l fresh sand filtered seawater for 120 

30 minutes as control, and three other non-toxic juveniles were sensed to TTX by immersing 200 MU 121 

(44 µg) TTX-containing seawater during the same period. For TTX-administration treatment, 0.1 ml 122 

of saline (1.35 % NaCl) as control and 150 MU (33 µg) TTX solution dissolved with saline was 123 

administered in a single injection into the dorsal muscle of three other non-toxic cultured juveniles 124 

using a 1 ml disposable syringe (Terumo, Tokyo, Japan), and the both groups of juveniles were 125 

immediately returned to the 90-l tank. Then, all fish were collected at 24 hours after administration. 126 



The control, TTX-sensed and TTX-administered juveniles were anesthetized on ice, and then nasal 127 

region (olfactory epithelium and skin) and brain tissues were sampled, and stored in RNA later (Qiagen, 128 

Valencia, CA, USA) at -80°C until use. 129 

 130 

RNA extraction and cDNA library construction 131 

 132 

Total RNA was extracted from the samples using RNeasy Mini Kit (Qiagen) following the 133 

manufacturer’s instruction. The RNA samples were treated with DNase I (Takara, Tokyo, Japan) to 134 

digest contaminating genomic DNA. mRNA was then isolated from total RNA with Dynabeads® 135 

mRNA DIRECTTM Micro Kit (Life Technologies, Carlsbad, CA, USA). mRNA samples were 136 

fragmented, reverse transcribed and amplified to make barcoded whole transcriptome libraries using 137 

Ion Total RNA-seq Kit v2 (Life Technologies). Yield and size distribution of the fragmented RNA and 138 

the amplified cDNA were checked using an Agilent 2200 Tapestation with High Sensitivity RNA 139 

ScreenTape® and High Sensitivity D1000 ScreenTape® (Agilent Technologies, Palo Alto, CA, USA) 140 

at each step. We have performed a left size selection (< about 100 bp) with SPRIselect (Beckman 141 

Coulter, Krefeld, Germany) by using 1.2x volume of SPRI reagent to the nasal region samples. The 142 

average sizes of the amplified cDNAs were adjusted to be about 200 bp. Ion OneTouchTM System with 143 

Ion PITM Template OT2 200 Kit v3 (Life Technologies) was used to prepare enriched, template-144 

positive Ion PITM Ion Sphere Particles. 145 

 146 

Next-generation sequencing and data analysis 147 

 148 

The cDNA libraries were sequenced with an Ion ProtonTM System with an Ion PITM Sequencing 200 149 

Kit v3 (Life Technologies) following the manufacturer’s instructions. Sequencing results were 150 

imported into CLC Genomic Workbench7.5 (CLC bio, Aarhus, Denmark) as FASTQ files for further 151 

analysis. On CLC Genomic Workbench, the raw reads with the quality score less than 0.05 were 152 

trimmed using the “Trim Sequences” tool. Reads shorter than 50 bp were discarded. De novo sequence 153 



assembly was carried out on all trimmed reads from all libraries using the Trinity software [34] to 154 

generate contigs. Duplicated and highly similar sequences were removed by the software CD-HIT (ver. 155 

4.5.6. option, -c 0.9 [35]). Expression analysis was performed with RNA-seq Analysis Tool of CLC 156 

Genomics Workbench for each library using the nucleotide sequences of predicted transcripts in T. 157 

rubripes genome (FUGU version 4) cited from the Ensembl database and de novo assembled contigs 158 

as references, respectively. Parameters for read mapping were set as follows: Length fraction 0.7, 159 

similarity fraction 0.95. Gene expression was represented as RPKM (Reads Per Kilobase of exon 160 

model per Million). Cluster analysis based on the RPKM was performed by CLUSTER3.0 161 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv) using spearman correlation, and 162 

Java TreeView (http://jtreeview.sourceforge.net/) was used to visualize clustering relationship. 163 

Differential expression analysis between the control and TTX-sensed or TTX-administered juvenile 164 

samples was performed using R version 2.15.2 software (R Development Core Team 2008) package 165 

TCC with a false discovery rate (FDR) < 0.05 [36]. The homology searches of contigs detected as 166 

differential expression genes (DEGs) were conducted using BLASTX (e value 1e-5) against the NCBI 167 

non-redundant protein database. The DEGs assigned as unnamed protein products or uncharacterized 168 

proteins were excluded and we called them “known DEGs” in this paper. 169 

 170 

Results 171 

 172 

Sequencing and de novo assembly of nasal region and brain tissue transcripts 173 

 174 

Next-generation sequencing was conducted to generate expressed short reads from nasal region 175 

(olfactory epithelium and skin) and brain of the control, TTX-sensed and TTX-administered T. 176 

rubripes juveniles. We obtained 66,971,623 reads (2,192k – 3,325k reads/individual), with total 177 

nucleotides of 7,167,786,900 bp (231M – 364M bp/individual) (Table 1). Based on the reads, 153,958 178 

contigs, with an average length of 648 bp were assembled (Table 2). 179 

 180 



Read mapping and gene annotation 181 

 182 

The sequence reads were mapped to the nucleotide sequences of predicted transcripts in T. rubripes 183 

genome (FUGU version 4) cited from the Ensembl database and de novo assembled contigs to 184 

calculate the expression values. A hierarchical clustering analysis using the RNA-seq data analyzed 185 

by mapping to T. rubripes genome revealed that in Nasal region, the smaller and medium clusters 186 

tended to be form among samples (control and TTX) and between the trial groups (sensing and 187 

administration), respectively, and the larger clusters were formed between the tissues (nasal region 188 

and brain). However, the clusters were only formed about tissues by mapping to the constructed 189 

contigs (Fig. 1). The expression values were compared between the control and TTX-sensed or TTX-190 

administered T. rubripes juveniles. The number of known DEGs detected under TTX-sensing 191 

treatment compared to the control were 4 (19.0 % of total number of DEGs) in nasal region and 17 192 

(25.0 %) in brain, respectively (Table 3). In TTX-administration treatment, the number of known 193 

DEGs were 38 (37.3 %) in nasal region and 43 (35.0 %) in brain, respectively (Table 3). 194 

 195 

Expressed genes for TTX-sensed or TTX-administered juveniles 196 

 197 

The distinctly expressed known DEGs in nasal region of TTX-sensed juveniles showed no high (fold 198 

change (FC) > 10) and low (FC < -10) expression levels, while in brain, relatively high and low 199 

expression levels were observed in several genes such as those encoding long-chain-fatty-acid--CoA 200 

ligase 5-like (FC value of 78.04), hemoglobin embryonic subunit alpha-like (FC value of 61.93) and 201 

peptide yy-like (FC value of -14.42) (Table 4, 5). The known DEGs which showed relatively high and 202 

low expression levels were also detected under TTX-administration treatment. In nasal region, 203 

extracellular superoxide dismutase (FC value of 36.79), envelope polyprotein (FC value of 15.22), 204 

receptor (chemosensory) transporter protein 4 (FC value of 12.20), podocalyxin-like (FC value of -205 

24.90), tRNA-splicing endonuclease subunit sen15-like (FC value of -21.11), nuclear fragile x mental 206 

retardation-interacting protein 1-like (FC value of -20.19), period homolog 3 (drosophila) (FC value 207 



of -16.71) and integrin alpha-3-like (FC value of -12.78) were detected (Table 6). In brain, potassium 208 

voltage-gated channel subfamily b member 2-like (FC value of 11.85), sorbin and sh3 domain-209 

containing protein 2-like (FC value of 10.09) and period homolog 3 (drosophila) (FC value of -10.26) 210 

were detected (Table 7). In addition, several known DEGs were detected in both nasal region and brain 211 

of T. rubripes juvenile, such as those encoding long-chain-fatty-acid--CoA ligase 5-like under TTX-212 

sensing treatment (Table 4, 5) and period homolog 3 (drosophila), envelope polyprotein, period 213 

circadian protein homolog 2-like and lipocalin precursor under TTX-administration treatment (Table 214 

6, 7), and vasoactive intestinal peptide (vip) were down-regulated in brain under both TTX-sensing 215 

and TTX-administration treatment (Table 5, 7). 216 

 217 

Discussion 218 

 219 

In this study, we compared the gene expression in olfactory and brain among cultured T. rubripes 220 

juveniles with or without TTX-sensing and TTX-administration by transcriptome analysis using next-221 

generation sequencing. Hierarchical cluster analysis of expressed genes was performed to assess the 222 

transcriptional pattern variation. In the case of using the RNA-seq data analyzed by mapping to T. 223 

rubripes genome revealed that in Nasal region, the smaller clusters tended to be form among samples 224 

(control and TTX), but the medium clusters tended to be form between the trial groups (sensing and 225 

administration) for each tissue. These results indicate that the gene expression in olfactory and brain 226 

of T. rubripes juveniles was affected by the operation and was not dramatically changed by TTX 227 

treatment. However, a number of DEGs detected under TTX-sensing and TTX-administration 228 

treatment compared to the control. Based on these DEGs, the following shows TTX sensing and action 229 

of TTX in CNS of T. rubripes juveniles. 230 

 231 

TTX sensing of T. rubripes juveniles 232 

 233 

In nasal region (olfactory epithelium and skin) of TTX-sensed juveniles, mitogen-activated protein 4 234 



kinase 4-like isoform x2 gene that is inhibitor of adipogenesis [37] was highest up-regulated than the 235 

fresh seawater-immersed control juveniles. In addition, long-chain-fatty-acid--CoA ligase 5 (ACSL5)-236 

like gene which plays role in triacylglycerol (TAG) synthesis [38, 39] was up-regulated by TTX-237 

sensing. These results and evidences suggest that TTX-sensing affects lipid metabolism in nasal region 238 

of T. rubripes juveniles. However, the expression of genes related to olfaction did not change by TTX-239 

sensing. Given that cultured T. rubripes has not encountered TTX-bearing organisms, T. rubripes may 240 

instinctively sense TTX. 241 

 In brain of TTX-sensed juveniles, ACSL5-like and hemoglobin embryonic subunit alpha-like 242 

genes were extremely up-regulated than control fish. ACSL5 that is involved in TAG synthesis [38, 243 

39] was also highly expressed in nasal region of TTX-sensed juveniles, suggesting that TTX-sensing 244 

particularly affects lipid metabolism in nervous system. Highly expression of one kind of hemoglobin, 245 

which is involved in oxygen transport, suggests that nervous activity is promoted in brain of TTX-246 

sensed T. rubripes juveniles. Peptide yy (PYY)-like gene that has an appetite-regulation effect on fish 247 

[40-42] was down-regulated by TTX-sensing. In addition, vip peptides-like and TPA_inf: tachykinin 248 

1 genes which have a function as anorexigenic peptides in fishes [43, 44] were also down-regulated 249 

by TTX-sensing. Tachykinins is also related to dopaminergic system in mammals [45, 46]. In addition, 250 

Thy-1 membrane glycoprotein gene which may modulate dopamine metabolism in mammals [47] was 251 

down-regulated by TTX-sensing. If these evidences are applied to in fishes, some changes might occur 252 

in dopaminergic systems of TTX-sensed T. rubripes juveniles. Some studies have suggested the 253 

involvement of dopaminergic pathways in the central regulation of food intake in fishes [48-50]. Thus, 254 

TTX ingestion of T. rubripes juveniles is controlled at feeding center in brain and T. rubripes juveniles 255 

might sense TTX as a reward. 256 

 257 

Action of TTX in CNS of T. rubripes juveniles 258 

 259 

In nasal region of TTX-administered juveniles, extracellular superoxide dismutase gene, which 260 

protects the living body from oxidative stress, was highest up-regulated than saline-administered 261 



control juveniles. This study demonstrated the up-regulation of receptor (chemosensory) transporter 262 

protein 4 (RTP4). RTP family members are probable chaperon protein which facilitates trafficking and 263 

functional cell surface expression of some G-protein coupled receptors such as odorant receptor [51] 264 

and bitter taste receptor [52], suggesting that RTP4 is expressed in olfactory epithelium by TTX-265 

administration and acts as a transporting protein of TTX sensing receptor. Podocalyxin-like gene, 266 

which is known to be expressed in the developing brain of the mouse and plays multiple roles in neural 267 

development [53], was lowest down-regulated. In addition, this study demonstrated the up- and down-268 

regulation of cyclin-dependent kinase inhibitor 1-like isoform x1 which associates with olfactory 269 

epithelium regeneration [54], and immunoglobulin superfamily member 8-like, which facilitates 270 

olfactory sensory synapse formation [55], respectively. In fishes, neurogenesis continues throughout 271 

life under the influence of environmental experience [56]. Synthesizing these results and evidences, 272 

we presume that nerve cell renewal occurs in the olfactory system of T. rubripes under the influence 273 

of TTX which exists in the olfactory epithelium. The expression of per genetic group which ticks in 274 

the center of cell clock [57] was specifically down-regulated by TTX-administration as following: 275 

period circadian protein homolog 1 -like isoform x1, period circadian protein homolog 2-like and 276 

period homolog 3 (Drosophila). These results suggest that biological rhythm of T. rubripes juveniles 277 

changed by accumulating TTX in their body. The core feedback loop of clock genes accurately ticks 278 

every 24 h [57]. Thus, there was another possibility that sampling times of juveniles was related to the 279 

clock genes expression. 280 

 In brain of TTX-administered juveniles, potassium voltage-gated channel subfamily b 281 

member 2-like gene, which mediates membrane hyperpolarization during trains of action potentials 282 

[58, 59], was highest up-regulated than control fish. In addition, the expression of some genes which 283 

may be related to release of neurotransmitters changed by TTX-administration as following: clathrin, 284 

light chain [60], SRC kinase signaling inhibitor 1-like [61] and synaptotagmin-c-like [62]. SRC kinase 285 

signaling inhibitor 1 is involved in the formation and maintenance of synapses during developmental 286 

processes of brain [61]. Further, protein phosphatase 1B-like which involves in neurodegeneration 287 

[63] was up-regulated by TTX-administration, respectively. There are at least two main forms of neural 288 



plasticity; biochemical switching and structural reorganization [64, 65]. Neural plasticity aids in the 289 

adaptation and flexibility demanded by the diverse environment in which fishes inhabit [66]. Non-290 

toxic cultured T. rubripes juveniles is inferior in fear response comparing to the toxic wild juveniles, 291 

and release experiment into the pond with predators revealed that survival of cultured pufferfish with 292 

no TTX was significantly lower than that of toxic wild juveniles [28, 29]. These evidences suggest 293 

that T. rubripes juveniles utilize TTX to adapt to the environment with action of TTX in CNS. This 294 

study demonstrated the down-regulation of lipocalin precursor by TTX-administration in both nasal 295 

region and brain of T. rubripes juveniles. TBT-bp2 in the blood of P. olivaceus belongs to the lipocalin 296 

superfamily and shows highly identity to PSTBPs of T. pardalis [25]. From the fact that T. rubripes 297 

also have PSTBPs [24, 67, 68], the expression of lipocalin precursor may change in relation to the 298 

accumulation of TTX in their body. Interestingly, in brain of T. rubripes juveniles, vip which have a 299 

function as anorexigenic peptides in fish [44] were down-regulated by not only TTX-sensing but also 300 

TTX-administration. It may interpret that action of TTX to feeding center is not limited to only at the 301 

time of TTX ingestion, accumulated TTX also directly acts on CNS and adjust the intake. 302 

 In this study, we focused on the gene expression associated with TTX sensing and action of 303 

TTX in CNS of T. rubripes juveniles, thus did not concern the specificity of the fish to TTX. In the 304 

future, we need to use some other alkaloid such as palytoxin that is known for having other kinds of 305 

pufferfish [69] to investigate whether gene expression, behavioral and physiological change of T. 306 

rubripes juveniles are specific to TTX. 307 

 308 
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Tables 

 

Table 1 Overview of the sequencing of cDNA from nasal region (olfactory epithelium and skin) and brain of TTX-sensed and TTX-administered Takifugu rubripes juveniles 

Items 

TTX-sensing treatment  TTX-administration treatment 

Nasal region Brain  Nasal region Brain 

Control TTX Control TTX  Control TTX Control TTX 

Total number of reads 2,587k ± 94ka 3,325k ± 829k 2,192k ± 197k 2,551k ± 117k  3,073k ± 406k 3,052k ± 386k 2,870k ± 439k 2,675k ± 191k 

Total nucleotide length (bp)  261M ± 12M  355M ± 77M  231M ± 17M 269M ± 9M   364M ± 51M  337M ± 28M  299M ± 36M  273M ± 20M 

a Results are shown as mean ± SD of 3 fish     

508 



Table 2 Summary of de novo assembly of contigs from sequence 
reads for nasal region (olfactory epithelium and skin) and brain of 
TTX-sensed and TTX-administered Takifugu rubripes juveniles 

Items Number 

Total number of reads 66,971,623 

Total nucleotide length (bp) 7,167,786,900 

Total length of contigs (bp) 99,781,233 

Number of contigs 153,958 

Longest contig (bp) 17,962 

Average length (bp) 648 

 

  



 
Table 3 Number of differential expression genes (DEGs) detected in nasal region (olfactory epithelium and skin) and brain of TTX-sensed and TTX-administered Takifugu rubripes juveniles 

Mapping reference Items 

TTX-sensing treatment TTX-administration treatment 

Nasal region Brain Nasal region Brain 

Up-regulation Down-regulation Up-regulation Down-regulation Up-regulation Down-regulation Up-regulation Down-regulation 

T. rubripes genome 
Total Number of DEGs  0 0  3  1  2  7  5  8 

Number of known DEGs  0 0  2  1  1  6  3  6 

Contigs 
Total Number of DEGs 14 7 31 33 48 45 50 60 

Number of known DEGs  3 1  5  9 14 17 18 16 



 
 

Table 4 Genes that were up- and down-regulate in nasal region (olfactory epithelium and skin) of TTX-sensed Takifugu rubripes juveniles 
analyzed by mapping to contigs (FDR-corrected p-value <0.05) 

Contig ID Gene 
Expression in RPKMa (mean ± SD, n=3) Fold   

change Control        TTX       

c58136_g1_i1 Mitogen-activated protein 4 kinase 4-like isoform x2  21,892 ± 20,896  135,241 ± 65,074  6.18 

c61343_g1_i2 Calpain-1 catalytic subunit-like 265,065 ± 78,263 442,603 ± 8,410  1.67 

c73927_g1_i2 Long-chain-fatty-acid--CoA ligase 5-like  NDb  120,695 ± 38,720  NAc 

c81231_g1_i3 Bromodomain-containing protein 3-like isoform x1 319,451 ± 48,324   65,555 ± 27,773 -4.87 
a RPKM: reads per kilobase of exon model per million mapped reads                                                             
b ND: not detected                                                                                                     
c NA: not applicable 

  



 
 

Table 5 Genes that were up- and down-regulated in brain of TTX-sensed Takifugu rubripes juveniles analyzed by mapping to T. rubripes genome 
and contigs (FDR-corrected p-value <0.05) 

ID Gene 
Expression in RPKMa (mean ± SD, n=3) Fold   

changeControl         TTX          

Differential expression genes (DEGs) detected by mapping to T. rubripes genome                                                       
(Ensembl ID) 
ENSTRUT00000043560 Spermine synthase  9.3 ± 1.4  39.8 ± 11.6   4.28

ENSTRUT00000046894 Centromere protein N  NDb  9.2 ± 4.7   NAc

ENSTRUT00000047470 Peripherin  69.6 ± 30.9 11.2 ± 3.6  -6.19

     
Differential expression genes (DEGs) detected by mapping to contigs                                                                 
(Contig ID) 
c73927_g1_i2 Long-chain-fatty-acid-- CoA ligase 5-like  233.5 ± 404.4 18,221.6 ± 8,607.3  78.04

c51638_g1_i1 Hemoglobin embryonic subunit alpha-like  426.0 ± 737.9  26,383.3 ± 22,612.7  61.93

c71980_g1_i2 NADH dehydrogenase 14,183.9 ± 6,567.4  41,755.4 ± 22,042.0   2.94

c95098_g2_i1 Zinc finger protein Eos  48,870.1 ± 27,875.8 139,364.0 ± 11,130.5   2.85

c80686_g1_i1 General transcription factor IIF subunit 1-like 19,245.8 ± 2,027.7  47,290.7 ± 11,002.6   2.46

c70981_g1_i1 Peptide yy-like  8,298.1 ± 3,566.7  575.3 ± 996.5 -14.42

c78080_g1_i1 Urotensin ii-related peptide precursor 24,257.1 ± 8,487.6  3,352.4 ± 2,607.7  -7.24

c87450_g1_i1 Vip peptides-like  25,643.6 ± 16,773.2  4,403.0 ± 2,267.9  -5.82

c47673_g1_i1 Ras-related protein rab-8b-like 10,444.2 ± 4,183.4  2,020.7 ± 2,096.5  -5.17

c61457_g1_i1 Fibroblast growth factor receptor substrate 2-like 189,326.3 ± 94,323.7  77,067.8 ± 20,944.3  -2.46

c79330_g1_i1 Thy-1 membrane glycoprotein 242,220.3 ± 71,740.0 131,042.2 ± 26,743.4  -1.85

c90268_g1_i1 TPA_inf: tachykinin 1  97,141.8 ± 17,982.3 69,015.0 ± 5,749.7  -1.41

c90791_g1_i1 Neurobeachin-like isoform x3  59,884.0 ± 35,206.2  59,172.9 ± 22,897.8  -1.01

c75435_g1_i1 Growth hormone  114,851.9 ± 198,929.4  ND   NA
a RPKM: reads per kilobase of exon model per million mapped reads                                                                  
b ND: not detected                                                                                                         
c NA: not applicable 

  



 
 

Table 6 Genes that were up- and down-regulated in nasal region (olfactory epithelium and skin) of TTX-administered Takifugu rubripes juveniles analyzed by 
mapping to T. rubripes genome and contigs (FDR-corrected p-value <0.05) 

ID Gene 
Expression in RPKMa (mean ± SD, n=3) Fold   

change   Control       TTX          

Differential expression genes (DEGs) detected by mapping to T. rubripes genome                                                                   
(Ensembl ID) 
ENSTRUT00000016957 Receptor (chemosensory) transporter protein 4    1.1 ± 1.1 13.7 ± 2.8 12.20 

ENSTRUT00000046106 Podocalyxin-like    20.3 ± 16.7 0.8 ± 1.4 -24.90 

ENSTRUT00000007585 Period homolog 3 (Drosophila)    42.4 ± 21.3 2.5 ± 1.7 -16.71 

ENSTRUT00000007590 Period homolog 3 (Drosophila)   28.9 ± 6.2 3.7 ± 2.8 -7.74 

ENSTRUT00000003686 Complement component 8, gamma polypeptide   1,914.5 ± 723.9 463.4 ± 148.9 -4.13 

ENSTRUT00000023711 Tubulin, alpha 2   112.8 ± 29.6 29.4 ± 2.3 -3.83 

ENSTRUT00000038281 Circadian associated repressor of transcription     14.4 ± 10.5 NDb NAc

     
Differential expression genes (DEGs) detected by mapping to contigs                                                                             
(Contig ID) 
c63197_g1_i1 Extracellular superoxide dismutase     60.6 ± 105.0 2,229.8 ± 1,997.3 36.79

c87942_g1_i5 Envelope polyprotein   108.8 ± 127.7 1,655.2 ± 145.6 15.22

c77064_g1_i2 Cyclin-dependent kinase inhibitor 1-like isoform x1    761.1 ± 397.1 5,517.0 ± 2,584.5 7.25

c79561_g1_i2 Cytoplasmic dynein 1 intermediate chain 2-like isoform x3 1,283.2 ± 89.2 7,521.1 ± 6,305.5 5.86

c62397_g1_i1 Protein inscuteable homolog    481.7 ± 261.8 2,723.7 ± 816.7 5.65

c62397_g1_i1 Diamine acetyltransferase 1-like 10,569.0 ± 693.0 29,130.7 ± 6,054.7 2.76

c81702_g1_i1 Double stranded rna-activated protein kinase 2    1,551.9 ± 1,704.3 3,931.7 ± 1,071.3 2.53

c85001_g1_i7 Tumor necrosis factor receptor superfamily member 4-like    5,622.7 ± 1,286.2 13,152.5 ± 3,530.8 2.34

c77678_g1_i2 Mannose-specific lectin-like  194,004.1 ± 15,127.9 362,323.5 ± 41,810.5 1.87

c77678_g1_i1 Lily-type lectin 104,210.6 ± 7,187.5 194,205.6 ± 10,327.1 1.86

c77678_g1_i5 Mannose-specific lectin-like    91,364.8 ± 12,267.0 166,608.0 ± 6,407.8 1.82

c90536_g2_i1 Ribonucleoside-diphosphate reductase subunit m2-like isoform x1    4,292.3 ± 1,508.3 7,823.3 ± 2,087.8 1.82

c91998_g1_i4 Apoptosis facilitator bcl-2-like protein 14  2,139.7 ± 586.8 3,790.4 ± 1,082.3 1.77

c62456_g1_i1 Serine threonine-protein kinase psk2   ND 3,232.8 ± 4,607.5 NA

c60649_g1_i1 tRNA-splicing endonuclease subunit sen15-like  1,649.6 ± 862.9 78.2 ± 135.4 -21.11

c59514_g1_i1 Nuclear fragile x mental retardation-interacting protein 1-like   2,010.7 ± 1,146.2 99.6 ± 172.5 -20.19

c89300_g1_i3 Integrin alpha-3-like  1,409.7 ± 255.1 110.3 ± 191.0 -12.78

c55712_g1_i1 Isoleucine--trna cytoplasmic-like  1,610.1 ± 250.9 172.2 ± 149.5 -9.35

c63419_g1_i3 Lysyl oxidase  2,177.1 ± 310.6 233.7 ± 202.9 -9.31

c89139_g2_i1 Protein capicua homolog isoform x3  1,901.6 ± 920.7 216.6 ± 192.3 -8.78

c91950_g1_i1 Period circadian protein homolog 2-like  9,901.5 ± 860.0 1,685.4 ± 919.8 -5.88

c15805_g1_i1 Immunoglobulin superfamily member 8-like  11,099.7 ± 8,539.1 2,290.3 ± 573.9 -4.85

c59867_g1_i1 Salivary glue protein    7,503.1 ± 2,447.5 1,745.9 ± 395.5 -4.30

c52572_g1_i1 Polyhomeotic-like protein 3-like isoform x3  2,979.2 ± 585.1 749.2 ± 408.3 -3.98

c84319_g1_i3 SEC14-like protein 2-like 3,540.0 ± 959.1 981.0 ± 719.3 -3.61

c95794_g1_i2 C-terminal binding protein 1 4,728.5 ± 1,069.8 1,509.4 ± 581.8 -3.13

c80106_g2_i1 Lipocalin precursor 179,726.2 ± 53,330.8 62,486.5 ± 20,641.1 -2.88

c94326_g5_i1 Elongation of very long chain fatty acids protein 6-like 2,132.0 ± 984.2 749.9 ± 303.0 -2.84

c85958_g2_i1 Cytochrome c oxidase subunit ii 773,930.0 ± 36,745.0 641,615.3 ± 51,394.4 -1.21

c62014_g1_i1 LIM domain and actin-binding protein 1-like 7,473.6 ± 6,187.9 6,769.8 ± 2,706.2 -1.10



 
 

c82952_g1_i2 FERM and PDZ domain-containing protein 1-like isoform x1 1,580.8 ± 1,410.4 ND NA

a RPKM: reads per kilobase of exon model per million mapped reads                                                                             
b ND: not detected                                                                                                                    
c NA: not applicable 

  



 
 

Table 7 Genes that were up- and down-regulated in brain of TTX-administered Takifugu rubripes juveniles analyzed by mapping to T. rubripes genome 
and contigs (FDR-corrected p-value <0.05) 

ID Gene 
Expression in RPKMa (mean ± SD, n=3) Fold   

changeControl       TTX         

Differential expression genes (DEGs) detected by mapping to T. rubripes genome                                                             
(Ensembl ID) 
ENSTRUT00000043847 LIM domain only 2 (rhombotin-like 1) 7.9 ± 3.1 43.4 ± 15.4 5.48

ENSTRUT00000039938 Clathrin, light chain (Lca) 6.8 ± 2.3 35.7 ± 13.3 5.24

ENSTRUT00000006268 Family with sequence similarity 192, member A NDb 7.2 ± 1.2 NAc

ENSTRUT00000007585 Period homolog 3 (Drosophila) 27.4 ± 4.3 2.7 ± 1.3 -10.26

ENSTRUT00000043060 NHP2 non-histone chromosome protein 2-like 1b 
(Saccharomyces cerevisiae) 

25.4 ± 19.0 2.9 ± 1.1 -8.65

ENSTRUT00000022965 Pterin-4 alpha-carbinolamine dehydratase/dimerization 
cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 2 

28.6 ± 19.6 3.5 ± 2.3 -8.07

ENSTRUT00000008208 Immunoglobulin heavy variable 1-4 40.8 ± 24.0 7.9 ± 2.2 -5.14

ENSTRUT00000044170 Cytochrome P450, family 27, subfamily C, polypeptide 1 29.2 ± 4.9 8.2 ± 3.3 -3.56

ENSTRUT00000002671 Vasoactive intestinal peptide 16.6 ± 19.5 ND NA

     
Differential expression genes (DEGs) detected by mapping to contigs                                                                       
(Contig ID) 
c33428_g1_i1 Potassium voltage-gated channel subfamily b member 2-like 91.3 ± 31.2 1,081.1 ± 598.5 11.85

c50125_g1_i1 Sorbin and sh3 domain-containing protein 2-like 92.2 ± 80.6 930.5 ± 105.7 10.09

c61302_g1_i1 Transmembrane protein 119-like 100.1 ± 109.9 918.0 ± 464.2 9.17

c33376_g1_i1 Ubiquitin-conjugating enzyme e2 o-like 148.6 ± 156.4 1,238.8 ± 442.8 8.34

c87942_g1_i5 Envelope polyprotein 289.5 ± 107.9 2,169.1 ± 76.3 7.49

c10845_g1_i1 Ankyrin repeat and sterile alpha motif domain containing 1b 231.3 ± 205.0 1,700.9 ± 1015.0 7.36

c81025_g1_i1 Protein nynrin-like 279.8 ± 28.8 1,876.9 ± 462.9 6.70

c50509_g1_i1 Ubiquitin-conjugating enzyme e2 r1-like 153.0 ± 41.6 1,020.9 ± 409.7 6.67

c64715_g1_i1 Protein phosphatase 1B-like 613.6 ± 367.0 2,661.5 ± 865.0 4.34

c78791_g3_i1 Apoptogenic protein mitochondrial-like 480.3 ± 402.1 1,849.8 ± 1,000.8 3.85

c88645_g4_i3 SRC kinase signaling inhibitor 1-like 1,280.5 ± 621.3 2,083.3 ± 136.7 1.63

c82175_g1_i2 Serine threonine-protein kinase 38-like 2,230.3 ± 898.8 3,210.7 ± 470.3 1.44

c86443_g1_i1 PAX3- and PAX7-binding protein 1 35,715.3 ± 6,540.5 37,981.7 ± 1,870.0 1.06

c92296_g2_i2 Tubulin alpha-1A chain-like 273,304.4 ± 3,334.7 285,511.9 ± 2,173.3 1.04

c13692_g1_i1 Ribosomal protein L29 45,614.5 ± 4,756.2 47,495.1 ± 1,940.2 1.04

c113887_g1_i1 Supervillin-like isoform x5 ND 1,359.3 ± 1,989.9 NA

c149_g1_i1 Star-related lipid transfer protein 13-like ND 1,263.5 ± 1,570.3 NA

c57536_g1_i4 Neuronal pas domain-containing protein 2-like ND 1,141.5 ± 500.8 NA

c79100_g1_i2 Chymotrypsin-like elastase family member 2a-like 1,171.3 ± 1,374.8 189.6 ± 126.0 -6.20

c92921_g2_i1 Period 1 1,780.3 ± 178.6 290.9 ± 229.9 -6.10

c57364_g1_i1 Pterin-4-alpha-carbinolamine dehydratase 2-like 1,400.4 ± 468.0 329.0 ± 91.2 -4.26

c91950_g1_i1 Period circadian protein homolog 2-like 2,653.6 ± 152.5 894.3 ± 80.5 -2.97

c85532_g1_i2 Immunoglobulin mu heavy chain 2,279.3 ± 909.3 814.9 ± 421.1 -2.80

c51266_g1_i1 Rho GTPase-activating protein 23-like isoform x9 6,700.8 ± 3,078.6 2,570.6 ± 1,353.0 -2.61

c55701_g1_i1 Synaptotagmin-c-like 1,958.7 ± 246.0 782.5 ± 395.3 -2.50

c76601_g1_i1 Period circadian protein homolog 1-like isoform x1 7,336.8 ± 672.7 3,601.1 ± 1,293.5 -2.04

c77744_g1_i1 Period circadian protein homolog 1-like isoform x1 4,053.6 ± 474.7 1,990.0 ± 376.7 -2.04



 
 

c85980_g1_i1 Nuclear receptor subfamily 1 group d member 2-like 3,015.9 ± 803.3 1,641.8 ± 347.3 -1.84

c96661_g4_i1 Polyadenylate-binding protein 2-like isoform x3 5,808.0 ± 822.8 3,673.1 ± 277.3 -1.58

c80106_g2_i1 Lipocalin precursor 66,744.1 ± 8,471.7 52,467.3 ± 4,148.2 -1.27

c77464_g1_i1 Protein FAM107B-like 9,727.2 ± 1,094.3 7,685.5 ± 863.4 -1.27

c32430_g1_i1 60S acidic ribosomal protein P2 54,877.1 ± 2,565.7 50,338.9 ± 3,830.0 -1.09

c140829_g1_i1 Unconventional myosin-xviiib-like 1,257.2 ± 1,929.3 ND NA

c126916_g1_i1 Polycystin-1-like 1,127.9 ± 1,685.0 ND NA
a RPKM: reads per kilobase of exon model per million mapped reads                                                                       
b ND: not detected                                                                                                              
c NA: not applicable 

 
  



 
 

Figure legend 
 
 
Fig. 1 Hierarchical clustering dendrograms from the RNA-seq analyzed by mapping to Takifugu rubripes genome (a) and contigs (b). The numbers represent independent 
samples. The vertical scale represents between-cluster distance 
 

 

 


