<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>メガロプラジオシスの分子疫学とトキシン陽性菌の検出のリスクファクターについての検討</td>
</tr>
<tr>
<td>著者</td>
<td>岡田 侑也</td>
</tr>
<tr>
<td>キーワード</td>
<td>長崎大学 博士 医学</td>
</tr>
<tr>
<td>事由</td>
<td>パンフレットの作成</td>
</tr>
<tr>
<td>事由</td>
<td>ベンチマークの開発</td>
</tr>
</tbody>
</table>

この研究は、長崎大学の博士研究により行われました。
Original Article

Molecular epidemiology of *Clostridioides difficile* and risk factors for the detection of toxin gene-positive strains

Yuya Okada, Norihito Kaku*, Kosuke Kosai, Naoki Uno, Yoshitomo Morinaga, Hiroo Hasegawa, Katsunori Yanagihara

Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

**A R T I C L E   I N F O**

Article history:
Received 2 October 2018
Received in revised form 21 November 2018
Accepted 12 December 2018
Available online 12 January 2019

Keywords:
*Clostridioides difficile*
Molecular epidemiology
Risk factor
Toxin gene

**A B S T R A C T**

In this study, we investigated all *Clostridioides difficile* strains isolated from stool samples in Nagasaki University Hospital between January 2012 and December 2014. Toxin genes (*tcdA*, *tcdB* and *cdtA/cdtB*) were analyzed for multiplex PCR in a total of 213 strains. In the toxin gene-positive strain, PCR ribotyping was conducted using capillary gel electrophoresis-based PCR and the Webribo database. Patients’ backgrounds were analyzed by departments, disorders, antimicrobials, and clinical dates. The positive rates of *tcdA*, *tcdB*, and *cdtA/cdtB* genes were 62.9%, 63.4%, and 2.8%, respectively. The most frequent PCR ribotype was 047 (14.1%), followed by 014/0 (11.1%) and 002/0 (8.2%). In univariate analysis, the risk factors for the detection of toxin gene-positive strains in patients were older age (*p* = 0.0036), over > 65 years old (*p* = 0.0175), the patients hospitalized at Department of Digestive Surgery (*p* = 0.0059), higher CRP level (*p* = 0.0395), and lower albumin level (*p* = 0.0014). In the multivariate analysis, the risk factor for detection of toxin gene-positive strains was the patients hospitalized at Department of Digestive Surgery (OR: 4.62, 95% CI: 1.18–18.0, *p* = 0.0274). In this study, the percentage of toxin gene-positive and *cdtA/cdtB* gene-positive strains was almost the same as that reported in previous studies, but the ribotype was different. In addition, we revealed that the risk factor associated with the detection of toxin gene-positive strains was the patients hospitalized at Department of digestive surgery.

© 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

1. Introduction

*Clostridioides difficile* is a gram-positive anaerobic bacterium and a causative pathogen of antibiotic-associated diarrhea (AAC) [1]. In *C. difficile* infections (CDIs), toxin A and B play important roles [2,3]. Both toxins have cytotoxic activities and induce the release of various immunomodulatory mediators from epithelial cells, phagocytes, and mast cells [2]. Recently, the spread of binary toxin (CDT)-producing strains has raised a major concern in the United States and Europe. CDT-producing strains are highly resistant to fluoroquinolones and increase mortality [4–6]. In European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guideline for the diagnosis of CDI, glutamate dehydrogenase (GDH) screening test, toxin A and toxin B EIA testing, and nucleic acid amplification tests (NAATs) for toxin genes are recommended [7].

Although the sensitivities of NAATs were higher than that of the EIA test, it was difficult to conduct NAATs on all specimens in routine examinations, because of the high cost and labor involved. The first European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guideline recommend a two-step algorithm: first, samples should be analyzed by EIA testing; if the result is positive for GDH and negative for toxin A/B, samples are then analyzed by NAATs [7]. Recently, the fully automated molecular test (FAMT) has been developed, making it easier to perform NAATs [8,9] and allowing for the detection of CDT. Many hospitals are expected to implement the NAATs including FAMT, but there have been few molecular epidemiological studies of *C. difficile* and CDT in Japan [10–12].

In this study, we investigated the molecular epidemiology of *C. difficile*. Additionally, to clarify the patients who were recommended for performance of the NAATs, we investigated and compared the patients’ backgrounds between toxin-positive and -negative *C. difficile* to clarify the risk factors for CDI.
2. Materials and methods

2.1. Study design and sample collection

This study was conducted between January 2012 and December 2014. This study was approved by the ethics committee of Nagasaki University Hospital (13062425). We collected C. difficile isolated from stool samples between January 2012 and December 2014 in Nagasaki University Hospital. To avoid duplicates, only the first isolate from each patient was collected.

The patient background information, such as age, gender, length of hospitalization, underlying diseases, history of surgery within 90 days before submission of stool sample, length of hospitalization before submission of stool sample, oral and intravenous administration of antimicrobial agents, use of proton pump inhibitors (PPIs), and use of histamine-2 receptor antagonists (H2 blockers) within 60 days before submission of stool sample, CDI symptoms associated with CDI, and mortality rate were analyzed. We defined administration of metronidazole and oral vancomycin after submission of the stool sample as CDI treatment. Because we did not evaluate the Bristol scale in the laboratory during the study period, we investigated the development of diarrhea, based on medical history and the Bristol scale in the laboratory during the study period.

2.2. Genetic analysis

In this study, we used the ATCC9689 strain as a positive control. We inoculated all C. difficile strains with cycloserine-cefoxitin mannitol agar (CCMA; Nissui Pharmaceutical Co., Ltd., Japan). The plates were incubated at 37 °C for 48–72 h under anaerobic conditions. Bacterial DNA was extracted by using Achromopeptidase solution (Wako Chemical Co., Ltd., Osaka, Japan), 10% Chelex-100 (Bio-Rad Laboratories, Hercules, CA, USA), and the boiling method [13]. We confirmed the genes for toxins (tcdA and tcdB), CDT (cdtA and cdtB), and 16S rRNA by PCR as previously described [14]. The 16S rRNA primers were as follows: forward 8U, 5'-AGAGTTTGATCTMTGGCTCAG-3'; and reverse 1458B, 5'-TACGGTACCCTTGT-TACGAC-3' [15].

PCR ribotyping was evaluated by capillary gel electrophoresis-based PCR, which was performed according to the protocol of a previous study [16]. In this method, we used the Applied Biosystems 3130 genetic analyzer with POP7 polymer (Applied Biosystems, Foster City, CA, USA) and GeneScan-1200Liz size standard (Applied Biosystems). The size of each peak was determined using Peak Scanner software v1.0 (Life Technologies, Carlsbad, CA), and PCR ribotypes were determined by the Webribi database of the Austrian Agency for Health and Food Safety (https://weibribo.ages.at).

We defined a following situation as outbreak, based on the notification from Regional Medical Care Planning Devision, Healthy Policy Bureau, Ministry of Health, Labor and Welfare, Japan (December 19, 2014): same PCR ribotype strain was isolated from three or more patients hospitalized in same ward within 4 weeks.

2.3. Statistical analysis

The statistical software used in this study was JMP Pro 10.0.2 (SAS Institute Inc, Cary NC, USA). Continuous variables were compared using the Student’s t-test. The chi-square was used to compare categorical variables. Variables with a P value less than 0.20 according to the univariate analysis were considered for inclusion in the forward stepwise multivariate logistic regression analysis.

3. Results

3.1. Genetic analysis

C. difficile strains were isolated from a total of 213 (122 men and 91 women) patients during the study period (Fig. 1). The positive rates of tcdA, tcdB, and CDT genes were 62.9% (n = 134), 63.4% (n = 135), and 2.8% (n = 6), respectively. We defined strains harboring the tcdA and/or tcdB genes as toxin gene-positive strains. Among the toxin gene-positive strains, the positive rate of CDT gene was 4.4%.

PCR ribotyping was performed on toxin gene-positive strains (Table 1). The most frequent PCR ribotype was the 047 strain (14.1%), followed by 014/0 (11.1%), 002/0 (8.2%), 020 (6.7%), and 018 (4.4%). The PCR ribotypes of CDT-positive strains were 016 (two strains), 131 (three strains), and 413 (one strain). There was no outbreak of each PCR ribotype in this study.

3.2. Comparison of toxin gens-positive and -negative strains

The patient backgrounds with toxin gene-positive and -negative strains are shown in Table 2. The average age of the patients was significantly higher in patients with toxin gene-positive strains.
(54.2 years) than in those with toxin gene-negative strains (42.4) (p = 0.0034). There were significant differences between the two groups in terms of the inpatient department. The percentage of patients with toxin gene-positive strains who were hospitalized at the Department of Digestive Surgery was significantly lower in patients with toxin-positive gene (25 patients, 15.6%) than in those with toxin gene-negative strains (25 patients, 32.1%) (p = 0.0055). In contrast, the percentage of patients with toxin gene-positive strains who were hospitalized at the Department of Digestive Surgery was significantly higher than in patients with toxin-positive gene (27 patients, 20.0%) than in those with toxin gene-negative strains (four patients, 5.2%) (p = 0.0015). When analyzing the laboratory data, the serum albumin levels in patients with toxin gene-positive strains was significantly lower (3.0 ± 0.7 g/dl) than in those with toxin-negative strains (3.3 ± 0.7 g/dl) (p = 0.0017).

Administration of antimicrobials, PPIs, and H2 blockers and antimicrobial agents is summarized in Table 3. The PPIs, H2 blockers, and antimicrobial agents were administered to 84 patients (39.4%), 15 patients (7.0%), and 157 patients (70.5%), respectively. The percentage of those administered with macrolides was significantly higher in the patients with toxin gene-positive strains (seven patients, 5.2%) than in those with gene-negative strains (0 patients, 0.0%) (p = 0.0107).

3.3. Risk factor for detection of toxin gene-positive strains

We compared the background of the patients with toxin gene-positive and -negative strains by univariate and multivariate analyses to clarify the risk factors for the detection of toxin gene-positive strains (Table 4). In the univariate analysis, the risk factors for the detection of toxin genes positive-strain were older age (OR, 0.99; 95% CI, 0.98–1.00; p = 0.0036), over 65 years old (OR, 2.03; 95% CI, 1.13–3.63; p = 0.0175), patients hospitalized at the Department of Digestive Surgery (OR, 4.63; 95% CI, 1.55–13.8; p = 0.0059), higher CRP level (OR, 0.94; 95% CI, 0.89–1.00;
Table 3
Comparison of administration of PPI, H2 blocker and antimicrobial agents between the patients with toxin genes-positive and negative strains.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n = 213)</th>
<th>Patients with toxin genes-positive strain (n = 135)</th>
<th>Patients with toxin genes-negative strain (n = 78)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPIs</td>
<td>84 (39.4%)</td>
<td>54 (40.0%)</td>
<td>30 (38.5%)</td>
<td>0.8247</td>
</tr>
<tr>
<td>H2 blocker</td>
<td>15 (7.0%)</td>
<td>9 (6.7%)</td>
<td>6 (7.7%)</td>
<td>0.7793</td>
</tr>
<tr>
<td>Administration of antimicrobial agents within 60 days</td>
<td>157 (73.7%)</td>
<td>102 (75.6%)</td>
<td>55 (70.5%)</td>
<td>0.4288</td>
</tr>
<tr>
<td>Penicillin</td>
<td>49 (23.0%)</td>
<td>31 (23.0%)</td>
<td>18 (23.1%)</td>
<td>0.9848</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>81 (38.0%)</td>
<td>51 (37.8%)</td>
<td>30 (38.5%)</td>
<td>0.9211</td>
</tr>
<tr>
<td>1st generation Cephalosporin</td>
<td>17 (8.0%)</td>
<td>12 (8.9%)</td>
<td>5 (6.4%)</td>
<td>0.5139</td>
</tr>
<tr>
<td>2nd generation Cephalosporin</td>
<td>7 (3.3%)</td>
<td>3 (2.2%)</td>
<td>4 (5.1%)</td>
<td>0.2625</td>
</tr>
<tr>
<td>3rd generation Cephalosporin</td>
<td>15 (7.0%)</td>
<td>12 (8.9%)</td>
<td>3 (3.8%)</td>
<td>0.1478</td>
</tr>
<tr>
<td>4th generation Cephalosporin</td>
<td>48 (22.5%)</td>
<td>28 (20.7%)</td>
<td>20 (25.6%)</td>
<td>0.4124</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>64 (30.0%)</td>
<td>40 (29.6%)</td>
<td>24 (30.8%)</td>
<td>0.8614</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>7 (3.3%)</td>
<td>4 (3.0%)</td>
<td>3 (3.8%)</td>
<td>0.7302</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>30 (14.1%)</td>
<td>20 (14.8%)</td>
<td>10 (12.8%)</td>
<td>0.6852</td>
</tr>
<tr>
<td>Macrolides</td>
<td>7 (3.3%)</td>
<td>7 (5.2%)</td>
<td>0 (0.0%)</td>
<td>0.0107</td>
</tr>
</tbody>
</table>

Table 4
Univariate and multivariate analysis of the risk factor for the detection of toxin genes-positive strains.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>0.99</td>
<td>0.98–1.00</td>
</tr>
<tr>
<td>&lt;15 years old</td>
<td>0.41</td>
<td>0.21–0.79</td>
</tr>
<tr>
<td>≥65 years old</td>
<td>2.03</td>
<td>1.13–3.63</td>
</tr>
<tr>
<td>Department of Pediatrics</td>
<td>0.39</td>
<td>0.20–0.76</td>
</tr>
<tr>
<td>Department of Digestive Surgery</td>
<td>4.63</td>
<td>1.55–13.8</td>
</tr>
<tr>
<td>Intestinal diseases</td>
<td>2.21</td>
<td>0.85–5.74</td>
</tr>
<tr>
<td>C-reaction protein (mg/dl)</td>
<td>0.94</td>
<td>0.89–1.00</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>2.02</td>
<td>1.29–3.14</td>
</tr>
<tr>
<td>Administration of 3rd generation Cephalosporin within 60 days</td>
<td>2.44</td>
<td>0.67–8.93</td>
</tr>
</tbody>
</table>

Multivariate analysis; Predictors with a P value < 0.20 in the univariate analysis were included in forward stepwise multivariate logistic regression analysis.

p = 0.0395), and lower albumin level (OR, 2.02; 95% CI, 1.29–3.14; P = 0.0014). In the multivariate analysis, the risk factors for the detection of toxin gene-positive strains were patients hospitalized at Department of Digestive Surgery (OR, 4.62; 95% CI, 1.18–18.0; p = 0.0274).

3.4. Characteristics of the patients with CDT gene-positive strains

CDT gene-positive strains were cultured from 6 patients (3 men and 3 women). The age range was 5–84 years, and the patients under 18 years included 2 patients. All patients had diarrhea, 3 had temperatures of over 38.5 °C, and the white blood cell count was high only in one case (29,700/µl). There were no severe cases, such as pseudomembranous enteritis, in the 6 patients. Treatment with CDT (vancomycin or metronidazole) was administered only in 3 patients as pseudomembranous enteritis, in the 6 patients. Treatment with CDT (vancomycin or metronidazole) was administered only in 3 cases. All cases were cured from CDI.

4. Discussion

This study revealed the molecular epidemiology of C. difficile and risk factors for the detection of toxin gene-positive strains. In a previous Japanese study, the percentage of toxin gene-positive strains and CDT gene-positive strains was 73% and 2%, respectively [10]. In other Japanese study, CDT-gene positive strains was 5% [17]. In comparison with the previous studies, the percentage of toxin gene-positive strains that was lower than that of CDT gene-positive strains was nearly the same in this study. The lower percentage of toxin gene-positive strain was caused by a difference in collection of samples. The previous report investigated suspected CDI, but in this study, we investigated all strains cultured from stool samples. Therefore, our study involved the patients with colonization of C. difficile. The percentage of CDT gene-positive strain in Japan seemed to be lower than that in other countries: the percentage of CDT gene-positive strain in Colombia was 17.5% [19,20]; in United Kingdom and Finland, the percentage of CDT gene-positive strains was 16.9% and 37%, respectively [19,20]. Additionally, in this study, we did not detect NAP1/027 and 078 strains, which were reported as the causative pathogens of serious and epidemic CDI in Europe and United States [21]. The PCR ribotype of CDT gene-positive strains in this study was 016, 131, and 413.

In this study, we clarified the PCR ribotype in all toxin gene-positive strains. The most frequent ribotypes as revealed by PCR for toxin gene-positive strains were 047, 014/0, and 027 in this study. In a previous Japanese study, the ribotypes present at a high frequency were strains 018, 002, 052, and 369 [22]. In other Japanese study, the ribotypes present at a high frequency was strains 449 [17]. The frequent PCR ribotypes varied by the studies in Japan [17,22]. In the United States, the most frequent PCR ribotypes were strains 002, 014–020, 027, and 053–163 [23], but the most frequent PCR ribotypes were different according to area. Other reports from the United States revealed that the most frequent PCR ribotypes in the northeast, southern, midwestern, and western United States were 027, 014/020, 106, 001, 053, respectively [24]. We hypothesized that ribotypes differed from area to area, and that it is important to conduct surveillance in each area. Additionally, 42% of the PCR ribotype strain 047 was detected from the patients at Department of Digestive Surgery in this study, but we did not observe outbreak of the strain. This result was indicating that epidemic ribotypes differed from ward to ward.

We investigated the risk factors for the detection of toxin-positive strains by comparing the characteristics of patients with toxin gene-positive and negative strains. In the univariate analysis,
there was no significant difference in the administration history of the antimicrobial drugs or the type of antibiotics between the patients with toxin gene-positive and -negative strains. Since the antimicrobial drug administration history was observed at almost the same ratio in both groups, administration of antimicrobial drugs may lead to the colonization of C. difficile. In the analysis of laboratory data, the patients with toxin gene-positive strains showed higher CRP and lower albumin levels. However, there were no significant differences in the multivariate analysis. It seems to be difficult to discriminate between the presence or absence of toxin gene-positive strains by using laboratory data. In the multivariate analysis, the risk factors for the detection of toxin gene-positive strains included hospitalized patients at the Department of Digestive Surgery. On the other hand, if C. difficile was detected in children, the possibility that they were also positive for toxin genes was relatively low in this study. A previous report revealed that CDI was more frequently caused in solid-organ transplant recipients than in other hospitalized patients, because solid-organ transplant recipients had a several CRD risk factors, such as PPIs, H2 blockers, age greater than 65 years old, severe underlying disease, uremia, gastrointestinal surgery, presence of nasogastric or enteralchec tube, and prolonged hospitalization [25]. The Department of Digestive Surgery in our hospital conducts solid-organ transplants, and it seemed to have had an influence on the higher percentage of toxin gene-positive strains in the Department of Digestive Surgery.

There were some limitations in this study. First, we studied only C. difficile strains cultured from stool samples, and CDIs diagnosed by only enzyme immunoassays were not included in this study. Second, we could not investigate the Bristol scale. If we could investigate the Bristol scale, we would evaluate the association between diarrhea condition and harboring toxin genes including C. difficile.

5. Conclusion

In this study, the percentages of toxin gene-positive and CDT gene-positive strains were almost the same as those reported in previous studies, but the ribotypes differed. In addition, we revealed that the risk factors associated with the detection of toxin gene-positive strains included patients hospitalized at the Department of Digestive Surgery.

Authorship statement

All authors meet the ICMJE authorship criteria.

Conflicts of interest

The authors declare no conflicts of interest.

References