<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>犬糸状虫の好中球遊走物質(NCF-Di)のin vivoでの作用と虫体からの放出</td>
</tr>
<tr>
<td>資料</td>
<td>中西 弘有 堀井 洋一郎 時岡 賢二郎 藤田 助一郎</td>
</tr>
<tr>
<td>雑誌名</td>
<td>熱帯医学</td>
</tr>
<tr>
<td>補遺</td>
<td>なし</td>
</tr>
<tr>
<td>元データベース</td>
<td>NAOSITE: Nagasaki University’s Academic Output SITE</td>
</tr>
</tbody>
</table>
Direct Attraction of Neutrophils in vivo by the Purified Neutrophil Chemotactic Factor of *Dirofilaria immitis* (NCF-Di) and Its Secretion from Adult Worms*

Hirokuni NAKANISHI¹, Yoichiro HORII¹, Kenjiro TERASHIMA² and Koichiro FUJITA²

¹ Department of Medical Zoology, Nagasaki University School of Medicine, 12-4 Sakamoto-Machi, Nagasaki 852, Japan
² Department of Medical Zoology, School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113, Japan

Abstract: The neutrophil chemotactic factor (NCF-Di) has recently been purified from *Dirofilaria immitis* as a polypeptide by us. In the present study, *in vivo* activity of NCF-Di and its secretion from the adult worm of *D. immitis* were investigated. When various concentrations of NCF-Di (0.5 to 500 µg/ml) were injected intradermally into the back of guinea pigs, a large number of neutrophils infiltrated at the injection sites 2 hours after the injection. The severity of the reaction reached the peak at 6 hours and was dose dependent. Whereas only a few other cells infiltrated. It is indicated that the neutrophil chemotactic factor of *D. immitis* could directly and selectively attract neutrophils in vivo. When intact adult worms of *D. immitis* were cultured, significant neutrophil chemotactic activity was detected in the culture supernatant of worms. This result suggests possible secretion of the neutrophil chemotactic factor by *D. immitis* adults in the hosts.

Key words: *Dirofilaria immitis*, Neutrophil, Neutrophil chemotactic factor (NCF)

The neutrophil chemotactic factor (NCF-Di) has recently been purified from *Dirofilaria immitis* adult worm extract. It is a polypeptide having a molecular weight of 14,000-17,000, and its physicochemical properties have also been characterized (Horii et al., 1986). The present study was designed to examine *in vivo* activity of NCF-Di and to investigate whether NCF was released from the worms of *D. immitis* or not.

The purified NCF of *D. immitis* was prepared according to the previous report (Horii et al., 1986). Protein concentration was adjusted by the method of Lowry et al. (1951).

Live *D. immitis* adult worms were collected from heart of dogs at necropsy under sterile condition. Worms were washed with sterilized phosphate-buffered saline (PBS, pH 7.4) and kept in RPMI 1640 culture medium containing 3% fetal bovine serum at 37°C for 24 hours. After removing supernatant, the remaining medium was collected and stored at -20°C. Neutrophils were isolated from guinea pig blood by the method of Iscove et al. (1967).

Received for Publication, April 21, 1988.

Contribution No. 317, from the Department of Medical Zoology, Nagasaki University School of Medicine.

This study was supported in part by Grant-in-Aid for Scientific Research (No. 61770271, 62570177) from the Ministry of Education, Science and Culture, Japan.
176

7.4), then used in the experiment immediately. Ten male and five female worms were cultured separately in glass dishes with 5ml of PBS plus antibiotics (150 IU penicillin and 150 μg streptomycin/ml) at 37°C. At intervals (0, 0 to 30, 30 to 90, 90 to 150, 150 to 210 and 210 to 270 minutes), culture fluids were collected and 5ml of fresh medium added. The culture fluids were centrifuged at 3,500 rpm for 10 minutes. Neutrophil chemotactic activity of the supernatant was tested by the in vitro chemotaxis assay.

In vivo chemotaxis was carried out using Hartley strain guinea pigs as previously (Horii et al., 1984). Animals were injected intradermally into the back with 0.1ml of sterilized NCF-Di (0.5, 5, 50, and 500 μg/ml). Ovalbumin (50 μg/ml) and PBS were used as negative controls. Groups of three animals were killed at 2, 6 and 24 hours after the injection and the tissue of injection sites were collected immediately. The specimens were fixed in 10% formalin solution, embedded in paraffin, sectioned at 4μm and stained with hematoxylin eosin. A total of 5 randomly selected high power fields (hpf) at 10×40 magnification for each section were examined in the upper limit of the panniculus carnosus and the reticular layer of dermis for neutrophils, and the total number of migrating cells was counted. The data reported here was based on the mean and standard error of mean (SEM) of cell numbers obtained from three animals in each group.

In vitro chemotaxis was carried out using Blind-well chambers with Millipore filters having a pore size of 3μm and guinea pig neutrophils (2×10⁶/ml) as the indicator cells according to the previous report (Horii et al., 1986). After 2 hours incubation of the chambers at 37°C in a 5% CO₂ atmosphere, membranes were stained according to the method of Litt (1963). The migrated neutrophils were counted as the method described previously (Horii et al., 1986). The total number of migrated neutrophils at 10 hpf was counted. Chemotactic activity was expressed as the mean±SEM of the total numbers from 4 filters.

As shown in Fig. 1, a large number of neutrophils infiltrated at the injection sites of NCF-Di 2 hours after the injection even at low concentration of protein (0.5 μg/ml). The cell numbers were increased and reached their peaks at 6 hours in dose dependent manner. Whereas either no eosinophils or only a few other cells were observed at the injection site.

As shown in Fig. 2, high neutrophil chemotactic activity was detected only in the culture supernatant of female worms during the early period of incubation (0 to 90 minutes).

The present data clearly indicates that the NCF of D. immitis attracts neutrophils directly in the tissues of normal animals. Moreover, this NCF was released from adult worms. These facts seem to be important to consider possible roles of NCF in the infection of filariae. Recently, Shigeno et al. (1987) reported that neutrophil infiltration was observed around the inoculated Brugia pahangi larva in the hamster tissue. If B. pahangi larvae have similar factor, it might cause such neutrophil infiltrations. Although neutrophils have been identified as one of the effector cells against parasites (Butterworth, 1984), roles of neutrophils in the real inflammatory lesions caused by parasites are complicated. It has
Fig. 1. Neutrophil infiltration in the tissues after the intradermal injection of the purified neutrophil chemotactic factor (NCF; ■=0.5, □=5, ▲=50, and △=500 μg/ml), ○=ovalbumin (50 μg/ml), and ●=PBS in normal Hartley strain guinea pigs. In each section a total of 5 hpf (×400) were counted for neutrophils. The data is based on the mean ± SEM of cell numbers obtained from three animals.

Fig. 2. Time-course of neutrophil chemotactic factor release in culture medium from 10 male (M) and 5 female (F) adult worms of *D. immitis*. Chemotactic activity was measured with guinea pig neutrophils as indicator cells. This activity is expressed as the total count of migrated cells in the 10 hpf of the Millipore filter. The data is based on the mean ± SEM of cell numbers in 4 filters. ◇=positive control (soluble egg extract of *Schistosoma japonicum*, 500 μg/ml).
been reported that neutrophils could not damage the larva of *Oesophagostomum aculeatum* in the inflammatory lesion in monkeys, in contrast to complete destruction of worms by eosinophils (Horii *et al.*, 1985). This report suggests that neutrophils do not always play an effector role in the inflammatory site. Since we have not a good laboratory model for investigation of immunological event in *D. immitis* infection, real role of the NCF of *D. immitis* in the infection still remain unclear. More recently, neutrophil chemotactic activity was detected in other species of filariae which can be maintained in laboratory animals (unpublished data). Therefore, roles of such NCF in the real infection should be further clarified using laboratory models.

REFERENCES