Fluid flow and heat transfer to modified power law fluids in plane Couette-Poiseuille laminar flow between parallel plates

Author(s)
Davaa, Ganbat; Shigechi, Toru; Momoki, Satoru; Jambal, Odgerel

Citation
長崎大学工学部研究報告 Vol.31(57) p.31-39, 2001

Issue Date
2001-07

URL
http://hdl.handle.net/10069/5153

NAOSITE: Nagasaki university’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Fluid flow and heat transfer to modified power law fluids in plane Couette-Poiseuille laminar flow between parallel plates

by

Ganbat DAVAA*, Toru SHIGECHI**, Satoru MOMOKI** and Odgerel JAMBAL*

The fully developed laminar heat transfer to modified power-law fluids flowing between parallel plates with one moving plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying the shear stress described by the modified power-law model, the energy equation together with the fully developed velocity profile is solved numerically for thermal boundary conditions of constant wall heat flux at one wall with the other insulated. The effects of the flow index, relative velocity of the moving plate, dimensionless shear rate parameter and Brinkman number on Nusselt numbers at the plate walls were discussed.

1. Introduction

Problems involving fluid flow and heat transfer with an axially moving core of solid body or fluid in an annular geometry can be found in many manufacturing processes, such as extrusion, drawing and hot rolling, etc. In such processes, a hot plate or cylindrical rod continuously exchanges heat with the surrounding environment. For such cases, the fluid involved may be Newtonian or non-Newtonian and the flow situations encountered can be either laminar or turbulent.

In the previous study(1), fully developed laminar heat transfer of a Newtonian fluid flowing between parallel plates with one moving plate was analyzed taking into account the viscous dissipation of the flowing fluid.

In the previous report(2), an exact solution of the momentum equation was obtained for fully developed laminar flow of a non-Newtonian fluid flowing between two parallel plates with one moving plate. The constitutive equation (i.e., the shear stress-shear rate relation) for the non-Newtonian fluid was described by the power-law model most frequently used in non-Newtonian fluid flow and heat transfer.

In the previous study(3), fully developed laminar heat transfer of a non-Newtonian fluid flowing between parallel plates with one moving plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying the velocity distribution obtained for the plane Couette-Poiseuille laminar flow, the energy equation with the viscous dissipation term was exactly solved for the boundary conditions of constant wall heat flux at one wall with the other insulated.

In this report, fully developed laminar heat transfer of a modified power-law fluid flowing between parallel plates with one moving plate was analyzed taking into account the viscous dissipation of the flowing fluid. Applying the shear stress described by the modified power-law model proposed by Capobianchi and Irvine(4), the energy equation together with the fully developed velocity profile is solved numerically for thermal boundary conditions of constant wall heat flux at one wall with the other insulated. The effects of the relative velocity of the moving plate, flow index, fluid consistency, dimensionless shear rate parameter and Brinkman number on Nusselt numbers at the plate walls were discussed.

Nomenclature

- A: area normal to the flow direction
- Br: Brinkman number
- c_p: specific heat at constant pressure
- D_h: hydraulic diameter $= 2L$
- f: friction factor
- k: thermal conductivity
- L: distance between the parallel plates
- m: consistency index
- n: flow index
- Nu: Nusselt number
- P: pressure
- q: wall heat flux
- Re_M: modified Reynolds number
- T: temperature

Received on April 20, 2001

* Graduate School of Science and Technology
** Department of Mechanical Systems Engineering
2. Analysis

The physical model for the analysis is shown in Fig. 1. The lower plate is axially moving at a constant velocity, \(U \).

The assumptions used in the analysis are:

1. The flow is incompressible, steady-laminar, and fully developed, hydrodynamically and thermally.
2. The fluid is non-Newtonian and the shear stress may be described by the modified power-law model (4), and physical properties are constant.
3. The body forces and axial heat conduction are neglected.

2.1 Fluid Flow

The momentum equation together with the assumptions described above is

\[
\frac{d\tau}{dy} = \frac{dP}{dz} \tag{1}
\]

where

\[
\tau = \eta_a \frac{du}{dy}. \tag{2}
\]

The boundary conditions are:

\[
\begin{align*}
\text{B.C.:} & \quad \begin{cases}
\text{for } n < 1: \\
\text{for } n > 1: \\
\end{cases} \\
\eta_a = \eta_a \left(1 + \frac{m}{\eta_a} \frac{d\eta}{dy}\right)^{n-1} & \quad \text{for } n > 1. \tag{5}
\end{align*}
\]

Average fluid velocity, \(u_m \), is defined as

\[
u_m = \frac{1}{L} \int_0^L u dy. \tag{6}
\]

The momentum equation and its boundary conditions are reduced to

\[
\frac{d}{dy^*} \left(\eta_a^* \frac{du^*}{dy^*} \right) = -2J \cdot Re_M, \tag{7}
\]

where

\[
\eta^*_a = \eta^*_a = \eta^* = f^* = \frac{\rho u_m D_h}{\eta^*} \tag{9}
\]

Dimensionless apparent viscosity \(\eta^*_a \) is defined as

\[
\eta^*_a \equiv \eta_a \frac{1 + \beta}{1 + \beta \left[\frac{du}{dy}\right]^{1-n}} \quad \text{for } n < 1, \tag{11}
\]

\[
\eta^*_a \equiv \frac{\eta_a}{\eta^*} = \beta + \frac{\left[\frac{du}{dy}\right]^{n-1}}{\beta + 1} \quad \text{for } n > 1, \tag{12}
\]

\[
\frac{\eta^*}{\eta^*_a} = \frac{\eta_a}{1 + \beta} \quad \text{for } n < 1, \tag{13}
\]

\[
\eta^* = \eta_a \left(1 + \frac{1}{\beta}\right) \quad \text{for } n > 1, \tag{14}
\]

\[
\beta = \frac{\eta_a}{1 + \eta_m \left(\frac{u_m}{D_h}\right)^{1-n}} \tag{15}
\]

\[
u_m = \frac{1}{L} \int_0^L u dy. \tag{6}
\]
2.2 Heat transfer

The energy equation together with the assumptions above is written as

\[k \frac{d^2T}{dy^2} + \tau \left(\frac{du}{dy} \right) = \rho c_p u \frac{dT_B}{dz}. \]

(16)

The following two types of the thermal boundary conditions are specified:

Case A (constant heat flux at the moving plate with the fixed plate insulated):

\[
\begin{cases}
-k \frac{dT}{dy} = 0 & \text{at } y = 0 \\
- \frac{dT}{dy} = q_c & \text{at } y = L,
\end{cases}
\]

(17)

Case B (constant heat flux at the fixed plate with the moving plate insulated):

\[
\begin{cases}
-k \frac{dT}{dy} = q_c & \text{at } y = 0 \\
- \frac{dT}{dy} = 0 & \text{at } y = L
\end{cases}
\]

(18)

where the wall heat fluxes, \(q_c \) and \(q_w \), are taken as positive into the fluid.

Bulk temperature is defined as

\[T_B \equiv \frac{\int_A uT dA}{\int_A u dA}. \]

(19)

\(dT_B/dz \) in Eq.(16) is evaluated, from an energy balance, as

\[
\frac{dT_B}{dz} = \frac{q_j}{\rho c_p u_m L} \left[1 + \int_0^L \frac{\tau \left(\frac{du}{dy} \right) dy}{q_j} \right].
\]

(20)

where \(j = L \) stands for Case A and \(j = 0 \) for Case B.

Introducing dimensionless temperature, \(\theta \), defined as

\[\theta \equiv \frac{T}{[q_j D_h/k]}, \]

(21)

the energy equation and the boundary conditions may be expressed in the dimensionless forms as

\[\frac{d^2\theta}{dy^*}\,^2 = 2u^* + Br \cdot V, \]

(22)

Case A:

\[
\begin{cases}
\frac{d\theta}{dy^*} = 0 & \text{at } y^* = 0 \\
\frac{d\theta}{dy^*} = 1 & \text{at } y^* = \frac{1}{2},
\end{cases}
\]

(23)

Case B:

\[
\begin{cases}
\frac{d\theta}{dy^*} = -1 & \text{at } y^* = 0 \\
\frac{d\theta}{dy^*} = 0 & \text{at } y^* = \frac{1}{2}
\end{cases}
\]

(24)

where

\[Br \equiv \frac{\eta^* u_m^2}{D_h \rho^*_j} \]

and

\[V = 2u^* \left\{ \int_0^{1/2} \eta^*_a \left(\frac{du^*}{dy^*} \right)^2 dy^* \right\} - \eta^*_a \left(\frac{du^*}{dy^*} \right)^2. \]

(26)

Nusselt number, \(Nu_j \), is defined as

\[Nu_j \equiv \frac{q_j / (T_j - T_B)}{D_h} = \frac{1}{\theta_j - \theta_B} \]

(27)

where dimensionless bulk temperature, \(\theta_j \), is defined as

\[\theta_B \equiv T_B / [q_j D_h / k] \]

(28)

and \((\theta - \theta_j) \) is calculated as

\[\theta_j - \theta_B = \int_0^{1/2} u^* (\theta_j - \theta) dy^*. \]

(29)

3. Results and discussion

In order to examine the reliability of the numerical solutions obtained in this study, the solutions computed for the momentum and energy equations together with respective boundary conditions were compared with the analytical solutions determined at the extremes at \(\beta \to 0 \) and \(\beta \to \infty \). Both solutions were in good agreement.

3.1 Fluid Flow

Parameter \(\beta \) defined by Eq.(15) represents dimensionless average shear rate under the specified fluid flow condition. For pseudoplastic fluids \((n < 1) \) the extreme at \(\beta \to 0 \) corresponds to a Newtonian fluid and that at \(\beta \to \infty \) a power law fluid. For dilatant fluids \((n > 1) \) the extreme at \(\beta \to \infty \) corresponds to a Newtonian fluid and that at \(\beta \to 0 \) to a power law fluid.

Figure 2 shows the effect of parameter \(\beta \) on friction factor in terms of \(f Re_m \). The values of \(f Re_m \) at the extremes of \(\beta \to 0 \) and \(\beta \to \infty \) approach, respectively, to the values of Newtonian fluid and power law fluid.

It is seen in Fig.2 that the values of \(f Re_m \) become greater with a decrease in \(U^* \).

Figure 3 shows the effect of parameter \(\beta \) on velocity profile across the channel for the nine combinations of \(n = 0.5, 1.0, 1.5 \) and \(U^* = -1, 0, 1 \). For \(n = 0.5 \) and \(n = 1.5 \) the velocity profiles are different depending on the magnitude of \(\beta \) with a decrease in \(U^* \).
Square of velocity gradient or parameter V given by Eq. (26) controls the heat transfer through Eq. (22) for the case with viscous dissipation. The magnitudes of them are shown in Figs. 4 and 5. It is seen that the values of square of velocity gradient and V become larger near the walls with an increase in β for $U^* = -1$ and $U^* = 0$. However they remain small near the moving wall for $U^* = 1$.

3.2 Heat transfer for Case A

Temperature difference $(\theta - \theta_B)$ for Case A is shown in Fig. 6 for $\beta = 1$. For $U^* = -1$ and $U^* = 0$, $(\theta - \theta_B)$ increases near the walls with an increase in Br_n and has a minimum value in the middle region of the channel. This is attributed to the heat generated by viscous dissipation near the wall as seen in Figs. 4 and 5, and large axial heat convection in the middle region as seen in Fig. 3. For the case of $U^* = 1$, $(\theta - \theta_B)$ increases with an increase in Br_n near the fixed wall. This is also owing to the heat generated by viscous dissipation near the fixed wall as seen in Figs. 4 and 5.

Nusselt numbers for Case A, Nu_L, are shown in Fig. 7. Nu_L decreases with an increase in Br_n for $U^* = -1$ and $U^* = 0$ and increases with an increase in Br_n for $U^* = 1$. These behaviors of Nusselt numbers Nu_L can be explained by the viscous dissipation effect on temperature difference $(\theta - \theta_B)$, as mentioned above.

4. Conclusions

Fully developed Couette-Poiseuille laminar flow between parallel plates was analyzed using the modified power-law model proposed by Capobianchi and Irvine (11). Furthermore, applying the fully developed velocity distribution calculated numerically, the energy equation together with the boundary conditions of constant wall heat flux at one wall with the other insulated was solved numerically taking into account viscous dissipation effect.

In the analyses of fluid flow and heat transfer of non-Newtonian fluids, the results calculated by adopting the simple power-law fluid model do not predict correctly the values of friction factor and Nusselt number in the region of lower shear rate. In order to calculate the whole region of shear rate from zero to infinity, the modified power-law model as adopted in this study should be used.

In this report the heat transfer study results for Case A only are discussed due to the limited space. The counterpart for Case B will be shown in another report.

Reference

Fluid flow and heat transfer to modified power law fluids in plane Couette-Poiseuille laminar flow between parallel plates

Fig. 3 Velocity profile
Fig. 4 Square of velocity gradient
Fig. 5 Distribution of parameter V
Fig. 6 Dimensionless temperature difference for Case A ($\beta = 1$)
Fluid flow and heat transfer to modified power law fluids in plane Couette-Poiseuille laminar flow between parallel plates

Fig. 7 Nusselt numbers for Case A