<table>
<thead>
<tr>
<th>Title</th>
<th>Note on a certain supersingular elliptic curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Washio, Tadashi; Kodama, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>長崎大学教育学部紀要 [自然科学 47(2002)1-2]</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-06-28</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/6110</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Note on a certain supersingular elliptic curve

Tadashi WASHIO and Tetsuo KODAMA∗
Department of Mathematics, Faculty of Education,
Nagasaki University, Nagasaki 852, Japan
(Received Mar. 15, 2002)

Abstract

Let \(p \) be an odd prime number such that \(p \equiv 2 \pmod{3} \) and denote by \(F \) a finite prime field of characteristic \(p \). Then it is shown that an elliptic curve \(y^2 = X(X^2 + X + s) \) defined over \(F \) is supersingular and so that the following equality
\[
\sum_{k=0}^{n} \binom{t}{k} \binom{t-k}{k} s^k = 0
\]
holds in \(F \) where \(t = (p-1)/2 \), \(n = \lceil t/2 \rceil \) and \(s = 1/3 \in F \).

1. Introduction

We denote by \(p \) an odd prime number and by \(F \) a finite prime field of characteristic \(p \). In the previous note [1], we proved that if \(p \equiv 5 \pmod{8} \) then the elliptic curve \(y^2 = X(X^2 + X + r) \) defined over \(F \) is supersingular and so the following equality
\[
\sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{k} r^k = 0
\]
holds in \(F \) where \(n = (p-1)/4 \) and \(r = 1/8 \in F \).

In this note, we want to prove, after the manner of [1], that if \(p \equiv 2 \pmod{3} \) then the following equality
\[
\sum_{k=0}^{n} \binom{t}{k} \binom{t-k}{k} s^k = 0
\]
holds where \(t = (p-1)/2 \), \(n = \lceil t/2 \rceil \) and \(s = 1/3 \in F \).

2. The number of rational points

Let \(p \) be an odd prime number such that \(p \equiv 2 \pmod{3} \) and denote by \(F \) a finite prime field of characteristic \(p \). Moreover we put \(s = 1/3 \in F \). Then it is clear that the polynomial \(X^2 + X + s \) is irreducible over \(F \) and so the curve defined by \(Y^2 = X(X^2 + X + s) \) over \(F \) is elliptic.

THEOREM 1. Denote by \(N \) the number of rational points of elliptic curve \(Y^2 = f(X) \) over \(F \) where \(f(X) = X(X^2 + X + s) \). Then \(N = p + 1 \) holds.

PROOF. We denote by \(\chi \) the multiplicative quadratic character of \(F \). Then \(N \) is

∗Professor emeritus, Kyushu University, Fukuoka 812, Japan
given by

\[N = p + 1 + \sum_{x \in F} \chi(f(x)). \]

Using our assumptions of \(p \equiv 2 \mod 3 \) and \(s = 1/3 \), we can easily show that, for any \(x, y \in F \), if \(x \neq y \) then \(f(x) \neq f(y) \). This means that \(\{ f(x) ; x \in F \} = F \).

Therefore we get

\[\sum_{x \in F} \chi(f(x)) = \sum_{x \in F} \chi(x) = 0 \]

and so we obtain \(N = p + 1 \).

3. Hasse invariant and binomial coefficients

We will now show that our curves are supersingular and give the congruence relations for binomial coefficients associated to these curves.

Theorem 2. If \(p \equiv 2 \mod 3 \) and \(s = 1/3 \in F = GF(p) \) then the elliptic curve \(Y^2 = X(X^2 + X + s) \) defined over \(F \) is supersingular.

Proof. According to Theorem 1, we see that our curve has \(p + 1 \) rational points over \(F \). This means that the Hasse invariant of our curve is zero and so our curve is supersingular.

Rewriting the Hasse invariant of curve \(Y^2 = X(X^2 + X + s) \) in terms of binomial coefficients, it is clear that Theorem 2 leads to the following result.

Theorem 3. If \(p \equiv 2 \mod 3 \) and \(s = 1/3 \in F = GF(p) \) then

\[\sum_{k=0}^{n} \binom{t}{k} \binom{t-k}{k} s^k = 0 \]

where \(t = (p-1)/2 \) and \(n = \lfloor t/2 \rfloor \). i.e., in the ring \(\mathbb{Z} \) of rational integers,

\[\sum_{k=0}^{n} \binom{t}{k} \binom{t-k}{k} 3^{n-k} \equiv 0 \pmod{p}. \]

References