<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>酸素活性試験を応用したワムシの大量培養診断</td>
</tr>
<tr>
<td>作者</td>
<td>アドリアナ ベレン デ アラウジョ, 萩原 篤志</td>
</tr>
<tr>
<td>誌名</td>
<td>長崎大学水産学部研究報告</td>
</tr>
<tr>
<td>年</td>
<td>2001</td>
</tr>
<tr>
<td>期</td>
<td>3</td>
</tr>
<tr>
<td>アクセス</td>
<td>URL: http://hdl.handle.net/10069/6540</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Application of enzyme activity test for the diagnosis of rotifer mass culture

Adriana Belem de Araujo & Atsushi Hagiwara

Graduate School of Marine Science and Engineering, Nagasaki University, Bunkyo – Nagasaki 852-8521 Japan
Faculty of Fisheries, Nagasaki University, Bunkyo – Nagasaki 852-8521 Japan

Early detection of stress in rotifer mass cultures is important for aquaculturists because it allows preventative action to be taken. We applied measurement of rotifer enzyme activity for evaluating the status of rotifer mass cultures in 1kl tank at 25°C. Two tests were conducted; one was to directly measure the enzyme activity of mass cultured rotifers, and the other was to monitor the enzyme activity of neonates from resting eggs after exposing them to a filtrate of rotifer mass culture water. From trials using three substrates (cFDAam, PLA, FDGlu) against neonates from resting eggs, esterase (cFDAam as a substrate) activity increased one day prior to the decline of rotifer population growth, indicating that this enzyme can be used as a tool for early warning for detection of instability of the mass culture practices conducted at a hatchery in Nagasaki. The daily change of rotifer population density was most parallel to that of glucosidase activity. When direct measurement of enzyme activity was conducted for mass cultured rotifers, however, esterase activity did not reveal a relationship with rotifer population growth. It was suggested that the enzyme activity test is appropriate when used for rotifers with the same size and age.

Key words: Rotifera, marine Brachionus, batch culture, enzyme activity, rotifer density, culture diagnosis

Introduction

Euryhaline rotifers Brachionus plicatilis and B. rotundiformis are used world-wide as live feed for marine fish larvae. Rotifer cultures occasionally crash, reducing larval food production and leading to larval starvation. Such collapses could conceivably lead to a loss of an entire year’s production (Lubzens et al.). Therefore, it would be useful to develop indicators that can assess the status of rotifer mass cultures daily and serve as an early warning of culture instability.

Several approaches have been attempted in order to minimize the likelihood of a crash and lessen its impact. These include adjusting the feeding rates or changing the food type to reduce the amount of organic material available for bacterial degradation, and lowering culture pH and using temperature to shift the chemical equilibrium of ammonia away from the unionized form (Bower and Bidwell, 1997). Yu and Hirayama, 1999). Droop (1986) tried to prevent the occurrence of rotifer crashes by growing axenic populations of B. plicatilis. He concluded, however, that this system is probably impractical for commercial practice.

Early detection of stress in mass cultures is important for aquaculturists because it allows preventative action to be taken. Snell et al. (1978) suggested culturists to monitor the physiological state of rotifers by measuring egg ratios and/or swimming activity as an early warning of culture collapse. However, egg ratio is not appropriate for a real-time assessment, because it reflects the rotifer reproductive ability in previous days. Swimming activity is more appropriate for real-time diagnosis of the culture. Koiso and Hino (1979) reported that ingestion rate was not sensitive enough to provide an assessment of the growth potential of the rotifer Brachionus plicatilis in mass culture environment. Monogonont rotifers occasionally stop swimming to attach substrates even when their physiological status is viable. Other stress indicators more amenable to these factors are useful in managing rotifer mass cultures.

In ecotoxicology, the sensitivity of any toxicant test is a critical factor in evaluating its usefulness for toxicity assessment. A variety of test methods have been published using reproductive rate (Snell and Moffat, 1987), Janssen et al., 1994a), ingestion rate (Ferrando et al., 1995), Juchelka and Snell, 1999), swimming activity (Janssen et al., 1992), Janssen et al., 1992b), and enzyme activity (Burbank and Snell, 1980), Moffat and Snell, 1980) as endpoints. The advantages and disadvantages of a variety of methods are shown in Table 1. Behavioral responses such as swimming activity and ingestion rate are usually rapid, occurring in minutes as opposed to the traditional endpoints such as mortality and reproduction, which require days for analysis. The disadvantages of behavioral endpoints, however, is that it is often unclear whether the effect is truly adverse. To demonstrate toxicity, an adverse effect must be shown (Rand and Petrocelli, 1981). However, some behavioral responses might be temporary, with test animals for example, which make a complete recovery after toxicant exposure has been terminated. Behavioral endpoints are particularly useful when they can be directly related to widely accepted adverse effects like reduced survival or reproduction. Swimming activity has been measured visually by counting the number of squares entered by a tested rotifer during a 60 sec observation period (Snell et al., 1978). This method was used by Janssen et al. (1992b) to assess the effects of toxicants on the swimming behavior of B. calyciflorus. Rotifer feeding behavior is an endpoint used in
Diagnosis of rotifer mass culture: Araujo, Hagiwara

toxicity studies that can be rapidly and easily quantified, and it can also be directly related to reproduction. Feeding behavior is typically measured by the subtraction method that quantifies microalgae concentration in the beginning and end of a feeding interval (Fernandez-Casalderrey et al. 1993; Ferrando et al. 1993).

The problem with this approach is that the exposure period to toxicant (hrs for this author) far exceeds the gut passage time for B. calyciflorus (Ferrando et al. 1993). Furthermore, when algal cells are individually counted, it is possible that some algal cells pass through the alimentary canal intact, resulting in an underestimation of the ingestion rate. In addition, the high variance associated with hemocytometer counts, deems this method inappropriate. Juchelka and Snell (1994) reported that ingestion rate using fluorescently labelled mm microspheres and image analysis was useful in acute toxicity tests in B. calicyflorus exposed to heavy metals.

One approach that holds promise as a stress indicator is enzyme inhibition assays. These are general indicators of stress that have been effectively employed in aquatic toxicology with cladocerans (Janssen and Persoone 1987; Janssen and Coen 1993) and rotifers (Snell and Janssen 1995; Janssen et al. 1993, 1994b; Snell et al. 1987; Juchelka and Snell 1994; Moffat and Snell 1994).

To assess the status of rotifer cultures, enzyme activity measurement was applied to small scale rotifer cultures by Araujo et al. (1994), where the effect of stressors was tested with rotifer enzyme activity, as well as with reproductive variables of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. This methodology proved to be reliable for detecting the physiological condition of rotifers cultured individually. Responses to stressors varied among tested enzymes. Figure 1 shows the schematic pattern of rotifer enzyme activity change against the
toxicity.

Table 1. Advantages and disadvantages of methods used as stress indicators in ecotoxicological tests

<table>
<thead>
<tr>
<th>Stress indicators</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg ratio</td>
<td>easy, cheaper</td>
<td>less reliable, less sensitive, 1-2 days delayed response</td>
<td>Snell et al. (1987)</td>
</tr>
<tr>
<td>Survival</td>
<td>easy, sensitive, cheaper</td>
<td>labor intensive (2-10 days), time consuming, less reliable</td>
<td>Snell and Janssen (1995)</td>
</tr>
<tr>
<td>Ingestion rate</td>
<td>easier; repeatability, more rapid, more reliable (image analysis), direct measurement</td>
<td>time consuming (5 hrs), estimation error (hemacytometer), less sensitive to chronic tests</td>
<td>Ferrando et al. (1993); Juchelka and Snell (1994)</td>
</tr>
<tr>
<td>Swimming activity</td>
<td>more rapid, repeatability sensitive</td>
<td>intensive labor (1hr), less reliable (frequent change of swimming direction, occasional attachment to substrate)</td>
<td>Janssen et al. (1993, 1994b); Snell et al. (1987)</td>
</tr>
<tr>
<td>Enzyme inhibition</td>
<td>more rapid, easier, repeatability cheaper, more sensitive, more reliable direct measurement, sensitive, visual observation (image analysis)</td>
<td>no visual observation (fluorometry), intensive labor (2 hrs)</td>
<td>Burbank and Snell (1994); Moffat and Snell (1994)</td>
</tr>
</tbody>
</table>

| Substrates for measuring esterase (–), glucosidase (– • –) and phospholipase (…) activity were cFDAam, FDGlu and PLA, respectively. |

Figure 1. Features of rotifer enzyme activity change against stress. Substrates for measuring esterase (–), glucosidase (– • –) and phospholipase (…) activity were cFDAam, FDGlu and PLA, respectively.
degree of environmental stress, which was illustrated based on the results reported by Araujo et al. (Rotifer culture). Glucosidase activity was highest under optimal environmental condition and decreased with the increase of stress. Phospholipase activity responses varied according to stressors type and/or slightly changed with increase of stress. Esterase activity increased with an early increase of stress and declined at higher levels. Similar trends have also been observed in esterase activity of the freshwater rotifer Brachionus calyciflorus in toxicity tests conducted by Burbank and Snell (B. calyciflorus), and esterases were reported to be involved with detoxification.

In Araujo et al. (Rotifer culture), tests were undertaken under laboratory conditions, where rotifer density was low and test animals were physio-morphologically uniform. In mass culture practices however, rotifer density is high and rotifers are of different age and size. High densities can lead to depletion of the culture environment and make it inappropriate for the rotifer growth. With respect to this paper, trials were conducted by applying enzyme activity measurement, to investigate whether this method is applicable to rotifer mass culture practices for evaluating environmental stress and predicting culture instability or collapse.

Material and Methods

Enzyme activity measurement

The enzyme activity measurement was conducted as following. Tested rotifers were exposed to one of three fluorogenic substrates (Molecular Probes Inc). These substrates, including β carboxyfluorescein diacetate acetoxymethylester (cFDAam), α β (β-nitrobenz-oxa- β-diazol- β-yl)amino)hexanoyl-β hexadecanoyl-sn-glycerol phosphocholine (PLA), and fluorescein di-α-D-glucopyranoside (FDGlu) were cleaved by endogenous esterase, phospholipase, and glucosidase, respectively, and yielded a fluorescein derivative that was highly fluorescent. Each substrate solution was prepared according to Burbank and Snell and divided into several aliquots and stored at -20°C until use.

An aliquot of 50μl of cFDAam, FDGlu and PLA solution was added to each of the three replicated test wells containing 200 rotifers, and incubated at 20°C in darkness for 1min. The concentration of these substrates was 20μM and 50μM, respectively. At the end of the 1min incubation, 40μl of sodium dodecyl sulfate (SDS) was added to stop the enzyme reaction. Samples were then vortexed for 1sec and centrifuged at 3000 rpm for 1min. Approximately 20μl of the supernatant was transferred to a 1x1cm borosilicate microcuvette cylinder which was placed into a fluorometer (Turner TD-20e) to measure the enzyme activity of fluorescent produced. Fluorescence emission was read at 520nm with an excitation wavelength of 485 nm (Moffat and Snell).

Rotifer culture

Rotifer mass cultures were conducted at the Larval Rearing Center at Nagasaki Prefectural Institute of Fisheries, Japan, from July to September of 1999. This institute aims to develop techniques to produce economically important fish larvae in large quantities and high consistency. B. rotundiformis was mass cultured using a batch culture method. Three-day batch cultures were conducted in 3 l tanks by continuously feeding condensed Chlorella vulgaris (Chlorella Industry Co.) at 10k cells/ml. Water temperature and salinity were adjusted at 25°C and 3ppt, respectively, with pH regulation at 8.0. Rotifer density in each tank was determined daily during the experiment. In this facility, rotifer cultures are started at 500–1000 ind./ml to aim at 10,000–12,000 ind./ml for harvesting and re-inoculation after 10 days.

Culture diagnosis

Two assays were conducted. The first assay was conducted directly with mass cultured B. rotundiformis population that consists of rotifers with different size and age. In the second assay, the filtrate of rotifer mass culture medium was collected and exposed to B. plicatilis (NH strain) neonates, which hatched within 8 hrs from resting eggs. Resting egg hatchlings of NH strain have been used as standard in the laboratory for a series of rotifer diagnosis study (Araujo et al., Bull. Fac. Fish. Nagasaki Univ., No.82).

Rotifer culture methods are numerous and are not consistent among hatcheries. Furthermore, the types of environmental stressors are specific to each hatchery. Culture temperature also varies among hatcheries or seasonally in a hatchery, which strongly affect the speed of enzymatic reaction. Thus, prior to two assays, we conducted screening of enzyme species with the method of the first assay, to find out which enzyme should be tested for diagnosing the mass culture status conducted in the institute. Since esterase was found to be the most promising enzyme for the culture diagnosis in this hatchery (see results section and Fig. 1), we employed esterase substrate for the diagnosis of culture trials.

Both tested rotifers or culture water filtrate were sampled from mass culture tanks after a period of 10 days. For the first assay, 100μl of rotifers or culture water filtrate were collected from mass culture tanks and their enzyme activities were measured directly by replicating measurement of the same sample for three times. For the second assay, 1μm mesh plankton net was used to separate the culture water from rotifers. The culture water was then filtered GF/C (Whatman) to remove Chlorella that affect rotifer enzyme activity measurement. One hundred hatched neonates from resting eggs were then exposed to a 1ml culture filtrate, in a total of three replicates, at 25°C for 6hrs. After exposure, enzyme activity measurement was conducted. The control was the enzyme activity of the newly hatched neonates exposed to filtered and autoclaved natural seawater with salinity at 3ppt (as in Araujo et al.).
Diagnosis of rotifer mass culture: Araujo, Hagiwara

For enzyme screening, first and second assays, two, five and four mass culture trials were conducted. The enzyme activity data was compared with the change of rotifer density in the cultures, and with a control. Analysis of variance was conducted to determine the difference in enzyme activity with culture progress, and Tukey or Dunnett test was performed for multiple comparisons of enzyme activity data between different stages of the culture or between data of each culture stage and control.

Results

Enzyme Screening

Figure 1 shows the result of enzyme screening test. The highest rotifer density and enzyme activities were observed on day 1 and the lowest were found to be on day 2. For all of the tests, enzyme fluorescence increased with higher rotifer density. Esterase activity on day 1 was higher but not significantly different from that of the control. It was higher than the control on day 2 and close to significant (p=0.08), and significantly lower than the control on day 3 (p=0.01). Phospholipase activity on day 2 and 3 significantly increased compared with control (p=0.01, 0.005 respectively), and it decreased significantly on day 4 (p<0.01). Glucosidase activity was higher on day 2 and 3 (each p<0.01), and lower on day 4 (p=0.05). Among the patterns of the enzyme activities change during the culture, only the increase of esterase activity (day 1) can explain the decline of rotifer population in the next day (day 2), which was consistent with the trend reported by Araujo et al. (2005).

![Fig. 2](image)

Fig. 2. Screening test of three enzymes for assessing the rotifer mass cultures. Columns represent esterase (cFDAaam, black), glucosidase (FDGluc, gray) and phospholipase (PLA2, white) activities (amount of fluorescence) measured on newly hatched B. plicatilis neonates from resting eggs exposed to culture filtrate from a batch culture. First columns represent enzyme activities of control rotifers. Line graphs are B. rotundiformis density in culture tanks. Vertical bars indicate standard deviation of three replicates. Significant differences between the control and enzyme activity data of each culture stage are indicated as * (p<0.05) and ** (p<0.01) (Dunnett test).

Culture diagnosis

Figure 2 shows esterase activity that was measured directly with mass cultured rotifers. Rotifer density increased with culture proceeds in trials I-1 and I-2, and rotifer population continued to decline in trial I-3. However, responses of esterase activity were not consistent with different patterns of rotifer population growth among four trials. For example, esterase activity trend was similar in I-1, I-2 and I-3, but a decline of the rotifer population was observed in I-4 while rotifers continued to grow in trials I-1 and I-2. Figure 2 indicates rotifer population growth in two mass culture trials and esterase activity change of B. plicatilis testing egg hatchlings exposed to the filtrate of rotifer mass culture. Results of two trials out of four are shown. In trial II-1 both rotifer density and esterase activity became higher as culture progressed. In trial II-2 the highest rotifer density and esterase activity were observed on day 1 and the lowest was found to be on day 4. Multiple comparison data shows a significant difference between enzyme activity data of different culture stages in trial II-2 and between data of each culture stage and the control (p<0.05). Similar result was obtained in trial II-3 except between the control and esterase activity on day 4 where significant difference was not observed.

Table 2. Occurrence of culture instability in trials I-1 to 5 and II-1 to 4, and increase of esterase activity on the previous day of culture instability

<table>
<thead>
<tr>
<th>Trial</th>
<th>Culture instability</th>
<th>Esterase increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>I-2</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>I-3</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>I-4</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>II-1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>II-3</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>II-4</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Discussion

The presence or contamination of certain bacteria or protozoans can cause a rapid and sudden crash of rotifer population (Yu et al., 2004; Cheng et al., 2005). However, in most cases, the instability of rotifer cultures is caused by a gradual increase of environmental stressors, such as an increase of free ammonia and...
contamination of bacteria and protozoans. This process includes, 1) increase of environmental stress, 2) decrease in physiological activity in rotifers, 3) decrease in reproductive ability and 4) decrease of rotifer population growth. The activities of three enzymes in the enzyme-screening test changed parallel with the change of rotifer density during the culture period (Fig. 3).

Generally, glucosidase and phospholipase activities of rotifers show a parallel change to a degree of physiological stress in rotifers (Fig. 3, Araujo et al. 1996). This implies that the activity of these two rotifer enzymes on day 2 (Fig. 3) did not indicate the physiological deterioration of rotifers that leads to the population decline on day 3. This may be because the decrease in physiological activity occurred rapidly due to the higher temperature (30°C) for rotifer cultures, and because of observation at 4-hrs intervals. Another possibility is that the enzymatic response of glucosidase and phospholipase against stress may be slower. Among the three enzymes tested in this study, responses of glucosidase was most highly correlated with reproductive variables (fecundity and lifespan) of rotifers exposed to environmental stress (Araujo et al. 1996). The use of glucosidase may be appropriate for rotifer cultures conducted at lower temperatures, where rotifer population growth rate and changes in culture environment are slower. Koiso and Hino (1996) observed that the decline in percent of swimming rotifers among eggs-bearing amictic females after 72 hrs exposure to 1000 ppt seawater correlated with daily population growth rate. However, this does not indicate that swimming activity measurement could serve as an early

Fig. 3. Esterase activity measurement using mass cultured rotifers. Columns (light) represent esterase activity (amount of fluorescence) of *B. plicatilis* neonates from resting eggs exposed to seawater (as reference). Columns (dark) represent esterase activity of randomly sampled rotifers from tank. Line graphs represent *B. rotundiformis* density in mass cultures. I-1, I-2, I-3 and I-4 indicate different trials. Vertical bars indicate standard deviation of three replicates. Significant differences (p < 0.05) between esterase activity data of different culture stages are indicated as a and b, where a < b (Tukey HSD test).

Fig. 4. Esterase activity measurement using filtrate of culture water. Columns (dark) represent esterase activity (amount of fluorescence) measured on newly hatched *B. plicatilis* neonates from resting eggs exposed to culture filtrate from a batch culture. Columns (light) represent esterase activity of control rotifers. Line graphs are *B. rotundiformis* density in culture tanks. II-1 and II-2 indicate different trials. Vertical bars indicate standard deviation of three replicates. Significant differences (p < 0.05) between esterase activity data are indicated as a, b, c and d where a < b < c < d (Tukey HSD test).
warning of culture collapse. When the percent of swimming rotifers was detected as low, the rotifer population was found to have already declined.

Since esterase activity of rotifers generally increases with a slight increase of physiological stress (Fig. 1), the increase of esterase activity on day 1 may have explained the rotifer population decline on day 3. Thus, we conducted subsequent trials of culture diagnosis by using only esterase.

With respect to the first assay, the increase of esterase activity was not always followed by declines of rotifer population growth on the next day (Table 1. Fig. 1). The problems that may be involved in this assay are; sampled rotifers were of different age and size, which were not physiologically uniform, enzyme activity data may have been reflected by that of contaminated protozoans because of the difficulty of isolating only rotifers when sampling.

Before the experiments, we anticipated the less sensitivity of the second assay (rotifers exposed to filtrate), because we needed to remove the contaminated protozoans by GF/C filtration in order to avoid the presence of rotifer food (Chlorella) during the assay test. When rotifers are fed, intense esterase activity is observed in the rotifer digestive organs (Araujo et al. 1999). Nevertheless, the result of the second assay suggest that the measurement of esterase activity with the culture water filtrate is useful for assessment of rotifer mass culture status, and can serve as an indicator of the upcoming culture instability or collapse. The mechanism of interference of rotifer population by protozoans has not been clarified (Jung et al. 1999), but chemical substances secreted by protozoans or associated bacteria may have primary roles. During the second assay experiment, only a limited quantity of B. rotundiformis resting eggs were available in our laboratory stock, so that the rotifer species used for esterase activity tests (B. plicatilis) and for culture trials (B. rotundiformis) were not identical. Although the patterns of enzyme activity change against environmental stress were similar between two species (Araujo et al. 1998), further experiments by using same rotifer species may provide sufficient information for the application of the method.

There are various methods of rotifer mass culture among hatcheries (Fulks and Main 2001). Further research in various methods is necessary to confirm the effectiveness of an enzyme activity test for the diagnosis of cultured rotifer condition, including semi-continuous (or thinning out) and continuous cultures.

Acknowledgments

We wish to express our thanks to the staff of the Larval Rearing Center, at the Nagasaki Prefectural Institute of Fisheries in Japan, for their assistance, and to the Japanese Ministry of Education, Science and Culture for providing a scholarship to ABA. A portion of this study was also supported by grants from Japan Science Society and Nagasaki Industrial Technology Foundation.

References

Burbank S.E. and Snell T.W., Rapid toxicity assessment using esterase biomarkers in Brachionus calyciflorus (Rotifera). Environmental Toxicity and Water Quality: Int. J. 1: 10-16

Droop M. R. The chemostat in mariculture. European Symposium on marine Biology. in press.

Ferrando M. D., Janssen C. R. and Persoone G., Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus. III. The effects of chemicals on feeding behavior. Ecotoxicology and Environmental Safety, in press.

Janssen C. R. and Persoone G., Rapid toxicity screening tests for aquatic biota. Methodology and experiments with...
Daphnia magna. Environmental Toxicology and Chemistry

Lubzens E., Raising rotifers for use in aquaculture. Hydrobiologia.

Lubzens E., Tandler A. and Minkoff G., Rotifers as food in aquaculture. Hydrobiologia.

Moffat B. D. and Snell T. W., Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera). Ecotoxicology and Environmental Safety, 2019.

Snell T. W. and Moffat B. D., A two-day life-cycle test with Brachionus calyciflorus. Envir. Toxicol. Chem., 2019.

酸素活性試験を応用したワムシの大量培養診断

アドリアナ ベレン デ アラウジョ，萩原 篤志

大量培養中のワムシのストレスを検出できたれば，培養不良の事前の回避に役立つ。ここでは，酸素活性測定によるワムシ培養診断を試みた。ワムシの培養には1 ㎥水槽を用い，培養水温を20℃とし，3日間供試し，その後，これにより得られた培養液を用いて，酸素活性を測定した。その結果，グルコースダーゼ活性（使用した基質はD-glucose）は，大量培養ワムシの個体群サイズと相関しながら変化することが分かったが，培養水温が高かったせいもあり（図1），一日一回の測定によって，大量培養ワムシ増殖率の低下を事前に検知することはできなかった。一方，環境中のストレス因子の増大にともなってエステラーゼ活性（基質，D-glucose）が上昇し，大量培養ワムシの増殖率が低下するとエステラーゼ活性も低下した。耐久卵孵化ワムシを用いたエステラーゼ活性の測定はワムシ培養不良を事前に検出する一手段になると考えられた。