A family of maximal hyperelliptic function fields of genus 2

Tadashi WASHIO and Tetsuo KODAMA*

Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki 852-8521, Japan
(Received October 31, 2006)

Abstract
This note is devoted to studying certain maximal hyperelliptic function fields of genus two defined over a finite field.

1. Introduction
A function field K of one variable over a finite field \mathbb{F}_q of order q is said to be maximal if the number N of degree one prime divisors of K is given by the Weil upper bound as

$$N = 1 + q + 2g\sqrt{q},$$

where g means the genus of K.

The maximal function fields or maximal curves have been studied extensively by Shparlinski[5], Stepanov[6] and Stichtenoth[7,8] and we have also obtained the explicit examples in the case of maximal hyperelliptic function fields whose defining equations are of the form

$$Y^2 = X^{2g+1} + a \text{ or } Y^2 = X(X^{2g} + a), \text{ (see [2,3]).}$$

For the general theory of algebraic function fields of one variable, refer to Deuring[1] and Stichtenoth[7]. "Prime divisor" is synonymous with "place".

*Professor emeritus, Kyushu University, Fukuoka 810-8560, Japan.
In the present note we want to consider a function field with genus two whose defining equation is of the form

\[Y^2 = X(X^2 + X + s)(X^2 + X + t) \]

and we will prove the following result.

Assume that \(p \) is a prime number satisfying \(p \equiv 9 \pmod{16} \) and denote by \(r \) the element in \(\mathbb{F}_p \) satisfying \(8r = 1 \). Moreover denote by \(s \) and \(t \) two distinct solutions in \(\mathbb{F}_p \) of the quadratic equation

\[X^2 - 2rX + 4r^3 = 0. \]

Then the hyperelliptic function field defined by \(Y^2 = X(X^2 + X + s)(X^2 + X + t) \) over \(\mathbb{F}_{p^2} \) is maximal.

Our proof is based on the theory of Gauss and Jacobi sums.

2. Roots of biquadratic equations

Throughout this section we assume that \(p \) is a prime number satisfying \(p \equiv 9 \pmod{16} \) and denote by \(r \) the element in \(\mathbb{F}_p \) satisfying \(8r = 1 \). Moreover denote by \(s \) and \(t \) two distinct solutions in \(\mathbb{F}_p \) of the quadratic equation

\[X^2 - 2rX + 4r^3 = 0. \]

In our case we have known that two polynomials \(X^2 + X + s \) and \(X^2 + X + t \) are irreducible over \(\mathbb{F}_p \), (see [9]).

Now we put

\[f(X) = (X^2 + X + s)(X^2 + X + t) \]

and discuss properties of the roots of the biquadratic equation \(f(X) = \alpha \) for an element \(\alpha \in \mathbb{F}_{p^2} \).
Let $F = \mathbb{F}_{p^2}$, $F^* = F \setminus \{0\}$ and $F^{*4} = \{ \lambda^4 \mid \lambda \in F^* \}$. Furthermore we denote by θ a generator of the cyclic group F^* and fix it. Also put $\iota = \theta^{(p^2-1)/16}$ and $i = i^4$. Clearly ι is a primitive 16-th root of unity and i is a primitive 4-th root of unity.

Moreover, for $\alpha \in F$, we denote by $\Lambda(\alpha)$ and $\Lambda'(\alpha)$ two roots of the quadratic equation

$$X^2 - 4\alpha X + r^4 = 0.$$

Then, because of $\Lambda(\alpha)\Lambda'(\alpha) = r^4$, it is clear that $\Lambda(\alpha) \in F^{*4}$ is equivalent to $\Lambda'(\alpha) \in F^{*4}$. Clearly $\alpha = \pm 4r^3$ if and only if $\Lambda(\alpha) = \Lambda'(\alpha)$ and then $\Lambda(\alpha) = \pm r^2$.

Furthermore let χ be the multiplicative quadratic character of F. Then, from our assumption $p \equiv 9 \pmod{16}$, we have $(p^2 - 1)/16 \equiv 1 \pmod{2}$ and so $\chi(\iota) = -1$. The Legendre symbol $\left(\frac{2}{p}\right) = 1$ gives us $\chi(\sqrt{2}) = \chi(\sqrt{r}) = 1$.

Lemma 1. (1) There exists an x in F satisfying $\Lambda(f(x)) = \Lambda'(f(x)) = r^2$ and then the roots of the equation $f(X) = f(x)$ are given by $0, -1$ and $-4r$. Clearly $r^2 \in F^{*4}$, $f(x) = 4r^3$ and $\chi(-4r) = \chi(-4r + 1) = 1$.

(2) There exists an x in F satisfying $\Lambda(f(x)) = \Lambda'(f(x)) = -r^2$ and then the roots a’s of the equation $f(X) = f(x)$ are given by $-4s$ and $-4t$. Clearly $-r^2 \in F^{*4}$, $f(a) = -4r^3$ and $\chi(a) = \chi(a + 1) = 1$.

(3) If $\mu \in F^*$ and $\mu^4 \neq \pm r^2$, then there exists an x in F satisfying $\Lambda(f(x)) = \mu^4$ or $\Lambda'(f(x)) = \mu^4$. In this case, the equation $f(X) = f(x)$ has four distinct roots a’s in F and $\chi(a(a + 1)) = 1$ holds. Clearly $f(a) = \lambda^4 + 4r^6/\lambda^4$, where $\lambda^4 = 2r\mu^4$.
PROOF. It is clear that $\pm r^2 \in F^*4$, $\Lambda(4r^3) = \Lambda'(4r^3) = r^2$ and $\Lambda(-4r^3) = \Lambda'(-4r^3) = -r^2$. Therefore the assertions (1) and (2) follow at once from

$$f(X) - 4r^3 = X(X + 1)(X + 4r)^2,$$

$$f(X) + 4r^3 = \{(X + 4s)(X + 4t)\}^2.$$

To prove the assertion (3) let us assume that $\mu \in F^*$ and $\mu^4 \neq \pm r^2$. Moreover we put $\lambda^4 = 2r\mu^4$ and $\alpha = \lambda^4 + 4r^6/\lambda^4$. Then it is clear that

$$(4\lambda^4)^2 - 4\alpha(4\lambda^4) + r^4 = 0$$

and so we have $\Lambda(\alpha) = \mu^4$ or $\Lambda'(\alpha) = \mu^4$.

Since $f(X)$ has an expression as

$$f(X) = (X^2 + X + r)^2 - 4r^3$$

and α has two ways of expressions as

$$\alpha = (\lambda^2 i^{2n} + \frac{2r^3}{\lambda^2 i^{2n}})^2 - 4r^3 \quad (n = 0, 1)$$

we see

$$f(X) - \alpha = \prod_{n=0,1} \{X^2 + X + r - (\lambda^2 i^{2n} + \frac{2r^3}{\lambda^2 i^{2n}})\}.$$

Here, for $n = 0$ or 1, the quadratic equation

$$X^2 + X + r - (\lambda^2 i^{2n} + \frac{2r^3}{\lambda^2 i^{2n}}) = 0$$

has the discriminant

$$4(\lambda i^n + \frac{4r^2}{\lambda i^n})^2 \neq 0$$

and hence it has distinct roots in F.
Therefore the equation $f(X) - \alpha = 0$ has four distinct roots a's in F. In this case it is clear that

$$a^2 + a = (\lambda i^n - \frac{4r^2}{\lambda i^n})^2 \neq 0$$

for some n and so we get $\chi(a(a+1)) = 1$. Lemma 1 is thereby proved.

Lemma 2. Let $a \in F$. If $a = 0, -1$ or $\chi(a(a+1)) = 1$, then

$$\Lambda(f(a)), \Lambda'(f(a)) \in F^{*4}$$

holds. In this case, if we put $\Lambda(f(a)) = \mu^4 (\mu \in F^*)$, then

$$\chi(\mu) = \begin{cases}
1 & \text{if } a = 0, -1 \text{ or } \chi(a) = \chi(a+1) = 1, \\
-1 & \text{if } \chi(a) = \chi(a+1) = -1.
\end{cases}$$

Proof. To begin with, we assume that $a = 0, -1$ or $\chi(a) = \chi(a+1) = 1$. In this case, F contains \sqrt{a} and $\sqrt{a+1}$. So we put

$$\nu = \sqrt{a} + \sqrt{a+1},$$

$$\nu' = \sqrt{a} - \sqrt{a+1}.$$

Then calculation shows that

$$r^2\nu^8 + r^2\nu'^8 = 4f(a),$$

$$(r^2\nu^8)(r^2\nu'^8) = r^4,$$

and so that

$$\{ \Lambda(f(a)), \Lambda'(f(a)) \} = \{ r^2\nu^8, r^2\nu'^8 \}.$$
It is clear that $r^2\nu^8, r^2\nu'^8 \in F^{*4}$. If we put $\Lambda(f(a)) = \mu^4 (\mu \in F^*)$ then μ has an expression of $\mu = i^n\sqrt{r\nu^2} \text{ or } \mu = i^n\sqrt{r\nu'^2}$ for some $0 \leq n \leq 3$. This leads to $\chi(\mu) = 1$.

We next assume that $\chi(a) = \chi(a + 1) = -1$. In this case, because of $\chi(\theta) = -1$, F contains $\sqrt{a\theta}$ and $\sqrt{(a + 1)\theta}$. So we put

$$\nu = \sqrt{a\theta} + \sqrt{(a + 1)\theta},$$
$$\nu' = \sqrt{a\theta} - \sqrt{(a + 1)\theta}.$$

Then calculation also shows that

$$r^2\nu^8\theta^{-4} + r^2\nu'^8\theta^{-4} = 4f(a),$$
$$(r^2\nu^8\theta^{-4})(r^2\nu'^8\theta^{-4}) = r^4,$$

and so that

$$\{\Lambda(f(a)), \Lambda'(f(a))\} = \{r^2\nu^8\theta^{-4}, r^2\nu'^8\theta^{-4}\}.$$

It is clear that $r^2\nu^8\theta^{-4}, r^2\nu'^8\theta^{-4} \in F^{*4}$. If we put $\Lambda(f(a)) = \mu^4 (\mu \in F^*)$, then μ has an expression of $\mu = i^n\sqrt{r\nu^2}\theta^{-1} \text{ or } \mu = i^n\sqrt{r\nu'^2}\theta^{-1}$ for some $0 \leq n \leq 3$. This leads to $\chi(\mu) = -1$. This completes the proof.

We now define the rational expressions $\Delta(X)$ and $\nabla(X)$ over F by

$$\Delta(X) = X + \frac{1}{X} \in F(X),$$
$$\nabla(X) = X - \frac{1}{X} \in F(X).$$

Then using $\Delta(X)$ and $\nabla(X)$ we can summarise Lemmas 1 and 2 as follows.
There exists $\alpha \in F$ such that $\Lambda(\alpha) = \mu^4$ for each μ in F^*. From this, we have $\alpha = 2r(\mu^4 + r^4/\mu^4)$. First, if $\chi(\mu) = 1$, then we can put $\mu = \sqrt{r}\lambda^2$ for some $\lambda \in F^*$ and so we get $\alpha = 2r^3\Delta(\lambda^8)$. Secondly, if $\chi(\mu) = -1$, then we can put $\mu = i\sqrt{r}\lambda^2$ for some $\lambda \in F^*$ and so we get $\alpha = 2ir^3\nabla(\lambda^8)$.

Conversely first, if we put $\alpha = 2r^3\Delta(\lambda^8)$ for each λ in F^*, then we get $\Lambda(\alpha) = r^2\lambda^8$ or $\Lambda'(\alpha) = r^2\lambda^8$ with $\chi(\sqrt{r}\lambda^2) = 1$. Secondly, if we put $\alpha = 2ir^3\nabla(\lambda^8)$ for each λ in F^*, then we get $\Lambda(\alpha) = i^4r^2\lambda^8$ or $\Lambda'(\alpha) = i^4r^2\lambda^8$ with $\chi(i\sqrt{r}\lambda^2) = -1$.

Therefore Lemmas 1 and 2 lead to the following theorem.

Theorem 1. (1) If $a \in F$ and $a = 0, -1$ or $\chi(a) = \chi(a + 1) = 1$, then there exists $\lambda \in F^*$ such that

$$f(a) = 2r^3\Delta(\lambda^8).$$

Conversely, if $\lambda \in F^*$, then there exists $a \in F$ such that $f(a) = 2r^3\Delta(\lambda^8)$ and then $a = 0, -1$ or $\chi(a) = \chi(a + 1) = 1$. Especially, for each powers λ^8, we can select such a’s above in four different ways besides $\lambda^8 = \pm r^2$.

(2) If $a \in F$ and $\chi(a) = \chi(a + 1) = -1$, then there exists $\lambda \in F^*$ such that

$$f(a) = 2ir^3\nabla(\lambda^8).$$

Conversely, if $\lambda \in F^*$ then there exists $a \in F$ such that $f(a) = 2ir^3\nabla(\lambda^8)$ and then $\chi(a) = \chi(a + 1) = -1$. Especially, for each powers λ^8, we can also select such a’s above in four different ways.
3. An application of Jacobi sums

Let \mathbb{F} be a finite field and denote by ψ and χ two multiplicative characters of \mathbb{F}. Then we define a Jacobi sum

$$J(\psi, \chi) = \sum_{\alpha \in \mathbb{F}} \psi(\alpha) \chi(1 - \alpha).$$

For the general theory of Jacobi sums and Gaussian sums, refer to Lidl and Niederreiter[4].

Lemma 3. Let p be a prime number satisfying $p \equiv 9 \pmod{16}$ and put $F = \mathbb{F}_{p^2}$. Moreover denote by χ and μ two multiplicative characters of F such that χ is quadratic and μ is of degree 16. Then,

$$J(\mu^j, \chi) = -p$$

holds for any odd integer j satisfying $1 \leq j \leq 15$.

Proof. For a multiplicative character ψ and the canonical character ϕ of F we define a Gaussian sum

$$G(\psi, \phi) = \sum_{\alpha \in F^*} \psi(\alpha) \phi(\alpha).$$

Then it is well-known that the Jacobi sum $J(\mu^j, \chi)$ is written of the form

$$J(\mu^j, \chi) = \frac{G(\mu^j, \phi)G(\chi, \phi)}{G(\mu^j \chi, \phi)}$$

where j is an odd integer satisfying $1 \leq j \leq 15$.

Since χ is quadratic the congruence $p \equiv 1 \pmod{4}$ leads to

$$G(\chi, \phi) = -p.$$
Moreover we can get easily

\[G(\mu^j, \phi) - G(\mu^j \chi, \phi) = \sum_{\alpha \in F^*, \chi(\alpha) = -1} \{ \mu^j(\alpha) + \mu^j(\alpha^p) \} \phi(\alpha). \]

because \(j \) is odd and \(\phi(\alpha) = \phi(\alpha^p) \).

Thus we have

\[G(\mu^j, \phi) - G(\mu^j \chi, \phi) = \sum_{\alpha \in F^*, \chi(\alpha) = -1} \{ 1 + \mu^j(\alpha^{p-1}) \} \mu^j(\alpha) \phi(\alpha). \]

It follows from \(\chi(\alpha) = -1 \) and \(p \equiv 9 \pmod{16} \) that we see \(\mu^j(\alpha^{p-1}) = -1 \) and so \(G(\mu^j, \phi) - G(\mu^j \chi, \phi) = 0 \). Therefore, from

\[G(\mu^j, \phi) = G(\mu^j \chi, \phi), \]

we obtain \(J(\mu^j, \chi) = -p \) which is the requested assertion.

Theorem 2. Let \(p \) be a prime number and put \(F = \mathbb{F}_{p^2} \). Furthermore denote by \(\theta \) a primitive root of \(F \) and fix it. Moreover put

\[M_1 = \{ (x, y) \in F \times F \mid -x^{16} + y^2 = 1 \}, \]
\[M_2 = \{ (x, y) \in F \times F \mid x^{16} + y^2 = 1 \}, \]
\[M_3 = \{ (x, y) \in F \times F \mid -x^{16} + \theta y^2 = 1 \}, \]
\[M_4 = \{ (x, y) \in F \times F \mid x^{16} + \theta y^2 = 1 \}. \]

If \(p \equiv 9 \pmod{16} \) then

1. \(\#M_1 - \#M_2 = 16p, \)
2. \(\#M_3 - \#M_4 = -16p, \)

where \(\# \) means the cardinal number of a set.
PROOF. Denote by \(\chi \) and \(\mu \) two multiplicative characters of \(F \) such that \(\chi \) is quadratic and \(\mu \) is of degree 16.

Then, by making use of the general theory of Jacobi sums, we have

\[
\#M_1 = p^2 + \sum_{j=1}^{15} \mu^j(-1)J(\mu^j, \chi),
\]

\[
\#M_2 = p^2 + \sum_{j=1}^{15} J(\mu^j, \chi),
\]

\[
\#M_3 = p^2 - \sum_{j=1}^{15} \mu^j(-1)J(\mu^j, \chi),
\]

\[
\#M_4 = p^2 - \sum_{j=1}^{15} J(\mu^j, \chi).
\]

and so we get

\[
\#M_1 - \#M_2 = \sum_{j=1}^{15} \{\mu^j(-1) - 1\}J(\mu^j, \chi),
\]

\[
\#M_3 - \#M_4 = \sum_{j=1}^{15} \{1 - \mu^j(-1)\}J(\mu^j, \chi).
\]

Furthermore we put \(\iota = \theta^{(p^2-1)/16} \). Then \(\iota \) is a primitive 16-th root of unity and \((p^2 - 1)/16 \equiv 1 \pmod{2} \). So we have \(\mu(-1) = \mu(\iota^8) = \chi(\iota) = -1 \).

Therefore, our assertions follow at once from Lemma 3.
4. The main result

Our main result is stated as follows.

Theorem 3. Let p be a prime number satisfying $p \equiv 9 \pmod{16}$ and denote by r the element in \mathbb{F}_p satisfying $8r = 1$. Moreover denote by s and t two distinct solutions in \mathbb{F}_p of the equation $X^2 - 2rX + 4r^3 = 0$. Then the hyperelliptic function field defined by

$$Y^2 = X(X^2 + X + s)(X^2 + X + t)$$

over \mathbb{F}_p^2 is maximal function field of genus two.

In this section we discuss under the same assumptions for p, r, s and t as in Theorem 3. We put $F = \mathbb{F}_p^2$ and denote by χ the multiplicative quadratic character of F with $\chi(0) = 0$. We denote by θ a generator of the cyclic group F^* and put $i = \theta^{(p^2-1)/4}$.

In order to prove Theorem 3, we prepare the following notations:

$$A_1 = \{ \lambda^8 | \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(2r^3\Delta(\lambda^8)) = 1 \},$$

$$A_2 = \{ \lambda^8 | \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(2ir^3\nabla(\lambda^8)) = 1 \},$$

$$A_3 = \{ \lambda^8 | \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(2r^3\Delta(\lambda^8)) = -1 \},$$

$$A_4 = \{ \lambda^8 | \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(2ir^3\nabla(\lambda^8)) = -1 \}.$$

where $\Delta(X) = X + 1/X$ and $\nabla(X) = X - 1/X$.

Lemma 4. Let notations M_1, M_2, M_3, M_4 be same as in Theorem 2. Then the following equalities hold:

1. $\#M_1 = 16 \#A_1 + 34$.
2. $\#M_2 = 16 \#A_2 + 18$.
(3) \(\#M_3 = 16 \#A_3\).

(4) \(\#M_4 = 16 \#A_4 + 16\).

Proof. Since \(\chi(2r^3) = \chi(2ir^3) = 1\), we have

\[
A_1 = \{ \lambda^8 \mid \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(\Delta(\lambda^8)) = 1 \},
\]

\[
A_2 = \{ \lambda^8 \mid \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(\nabla(\lambda^8)) = 1 \},
\]

\[
A_3 = \{ \lambda^8 \mid \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(\Delta(\lambda^8)) = -1 \},
\]

\[
A_4 = \{ \lambda^8 \mid \lambda \in F^*, \lambda^8 \neq \pm 1, \chi(\nabla(\lambda^8)) = -1 \}.
\]

First we will prove the assertion (1). Take \(\lambda^8 \in A_1\). Then \(\chi(\Delta(\lambda^8)) = 1\) leads to that there exists \(z \in F^*\) satisfying \(\lambda^8 + 1/\lambda^8 = z^2\), i.e., \(\lambda^{16} + 1 = z^2\lambda^8\) and so if we put \(x = \lambda\) and \(y = z\lambda^4\), then \((x, y) \in M_1\). Clearly this \((x, y)\) yields 16 solutions of the equation \(-X^{16} + Y^2 = 1\). In addition to such solutions, \(M_1\) contains \((0,1), (0,-1)\) and 32 solutions \((x, y)\) such that \(x^{16} = 1\) and \(y^2 = 2\). Thus we obtain \(\#M_1 = 16 \#A_1 + 34\).

In order to prove the assertion (2), take \(\lambda^8 \in A_2\). Then \(\chi(\nabla(\lambda^8)) = 1\) leads to that there exists \(z \in F^*\) satisfying \(\lambda^8 - 1/\lambda^8 = z^2\), i.e., \(\lambda^{16} - 1 = z^2\lambda^8\) and so if we put \(x = \lambda\) and \(y = iz\lambda^4\), then \((x, y) \in M_2\). Clearly this \((x, y)\) yields 16 solutions of the equation \(X^{16} + Y^2 = 1\). In addition to such solutions, \(M_2\) contains \((0,1), (0,-1)\) and 16 solutions \((x, 0)\) such that \(x^{16} = 1\). So we have \(\#M_2 = 16 \#A_2 + 18\).

To prove the assertion (3) we use \(\chi(\theta) = -1\). We also take \(\lambda^8 \in A_3\). Then \(\chi(\Delta(\lambda^8)) = -1\) leads to that there exists \(z \in F^*\) satisfying \(\lambda^8 + 1/\lambda^8 = \theta z^2\), i.e., \(\lambda^{16} + 1 = \theta z^2\lambda^8\) and so if we put \(x = \lambda\) and \(y = z\lambda^4\), then \((x, y) \in M_3\). Clearly this \((x, y)\) yields 16 solutions of the equation \(-X^{16} + \theta Y^2 = 1\). Since \(M_3\) contains no solutions except for such solutions we get \(\#M_3 = 16 \#A_3\).
Finally we will prove the assertion (4). Take \(\lambda^8 \in A_4 \). Then \(\chi(\nabla(\lambda^8)) = -1 \) leads to that there exists \(z \in F^* \) satisfying \(\lambda^8 - 1/\lambda^8 = \theta z^2 \), i.e., \(\lambda^{16} - 1 = \theta z^2 \lambda^8 \) and so if we put \(x = \lambda \) and \(y = iz\lambda^4 \), then \((x, y) \in M_4 \). This \((x, y) \) also yields 16 solutions of the equation \(X^{16} + \theta Y^2 = 1 \). In addition to such solutions, \(M_4 \) contains 16 solutions \((x, 0) \) such that \(x^{16} = 1 \). So we have \(\#M_4 = 16 \#A_4 + 16 \). This completes the proof.

From now on, we will prove Theorem 3.

Proof of Theorem 3. Let \(K \) be the hyperelliptic function field defined by \(Y^2 = X f(X) \) over \(F = \mathbb{F}_{p^2} \) where

\[
f(X) = (X^2 + X + s)(X^2 + X + t) \in \mathbb{F}_p[X].
\]

Let \(N \) be the number of places of degree one of \(K \). Then it is well-known that \(N \) is written by

\[
N = p^2 + 1 + S
\]

with

\[
S = \sum_{a \in F} \chi(af(a)),
\]

where \(\chi \) means the multiplicative quadratic character of \(F \).

Since the genus of \(K \) is equal to 2, we have to show \(S = 4p \). It is obvious that \(\chi(a(a + 1)) = \chi(a(-a - 1)) \) and \(f(a) = f(-a - 1) \) for any \(a \in F \).

So, if we put

\[
V^+ = \{ 2r^3 \Delta(\lambda^8) \mid \lambda \in F^*, \lambda^8 \neq \pm 1 \},
\]

\[
V^- = \{ 2ir^3 \nabla(\lambda^8) \mid \lambda \in F^*, \lambda^8 \neq \pm 1 \},
\]
then, by making use of Theorem 1, we get

\[S = \chi(-f(-1)) + \chi(-4rf(-4r)) + \chi(-4sf(-4s)) + \chi(-4tf(-4t)) \]
\[+ 4 \sum_{\alpha \in V^+} \chi(\alpha) - 4 \sum_{\alpha \in V^-} \chi(\alpha) \]
\[= 4 + 4 \sum_{\alpha \in V^+} \chi(\alpha) - 4 \sum_{\alpha \in V^-} \chi(\alpha). \]

Furthermore it is clear for different values \(\lambda^8 \) and \(\mu^8 \) that \(\Delta(\lambda^8) = \Delta(\mu^8) \), iff \(\lambda^8 \mu^8 = 1 \) and that \(\nabla(\lambda^8) = \nabla(\mu^8) \), iff \(\lambda^8 \mu^8 = -1 \). This yields

\[2 \sum_{\alpha \in V^+} \chi(\alpha) = \#A_1 - \#A_3, \]
\[2 \sum_{\alpha \in V^-} \chi(\alpha) = \#A_2 - \#A_4, \]

and so we have

\[S = 4 + 2(\#A_1 - \#A_3) - 2(\#A_2 - \#A_4) \]
\[= 4 + 2(\#A_1 - \#A_2) - 2(\#A_3 - \#A_4). \]

Using Lemma 4, we get

\[S = 4 + \frac{1}{8}(\#M_1 - \#M_2 - 16) - \frac{1}{8}(\#M_3 - \#M_4 + 16). \]

It follows immediately from Theorem 2 that we obtain \(S = 4p \). Theorem 3 is thereby proved.

Remark: We have proved in [9] that the hyperelliptic function field defined by \(Y^2 = X(X^2 + X + s)(X^2 + X + t) \) over \(\mathbb{F}_p \) has just \(p + 1 \) places of degree one.
References

