<table>
<thead>
<tr>
<th>Title</th>
<th>Nanostructuring of Teflon-likes in Single Step Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Agostino, Riccardo d'; Milella, Antonella; Mundo, Rosa Di; Intranuovo, Francesca; Palumbo, Fabio</td>
</tr>
<tr>
<td>Citation</td>
<td>Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008), pp.5-6</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-01-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/9828</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

http://naosite.lb.nagasaki-u.ac.jp
Nanostructuring of Teflon-likes in Single Step Processes

Riccardo d’Agostino1,2,3,*, Antonella Milella1, Rosa Di Mundo1
Francesca Intranuovo1 and Fabio Palumbo2
1Department of Chemistry, University of Bari,
2Institute of Inorganic Methodologies and Plasmas, IMIP, CNR, Bari,
3Plasma Solution, srl, Spin off of the University of Bari,

University of Bari, via Orabona 4, 70126 Bari, Italy
*Tel: +39-080-5442080, Fax: +39-080-5443405, E-mail: r.dagostino@chimica.uniba.it

Abstract

It is a general trend nowadays, and is also an useful approach for many important industrial applications, to tailor polymers to the desired chemistry or nano-morphology. The combination of both, chemistry and morphology, is a surplus value. Particularly if it is possible to tune each feature independently of the other.

In the University of Bari we have recently developed several approaches for tuning the nano-structure and chemistry of polymer surfaces by cold plasmas. In this conference we will deal only of single step nano-structuring plasma-processes with three different approaches:

- modulated deposition discharges;
- afterglow deposition processes;
- etching/treatment processes of conventional polymers.

The nano-structured materials which are obtained have unique structures, feature super-hydrophobicity, can be easily modified in the surface chemistries, and open the domains of several applications, from e.g. de-icing and micro-fluidic devices to tissue engineering. As an example, the combined etching/treatment of polystyrene lead to a nanostructured fluorinated polymer where, by increasing the height and decreasing the density of the structures formed, there is a transition from a sticky super-hydrophobic to a slippery super-hydrophobic behavior.

In figure 1 are shown the various nano-morphologies of the fluorinated polymers obtained with the three above approaches.
Fig. 1. SEM images of different nano-structured fluorinated polymers produced in single-step cold plasmas: (A) is a Teflon-like with crystalline ribbons, formed in a modulated C_2F_4 discharge; (B) is an afterglow Teflon-like, produced in the afterglow of a C_3F_6O (hexafluoropropylenoxide) discharge; (C) is a fluorinated polystyrene produced with an etching/treatment plasma process with CF_4/O_2.

Keywords
nanostructuring, super-hydrophobicity, etching/deposition, teflon-like, afterglow, modulated plasma