<table>
<thead>
<tr>
<th>Title</th>
<th>Theoretical Study on the Hole-Transport Property of Fullerene Hydrides C(_{60})H(2) and C({60})H(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tokunaga, Ken; Ohmori, Shigekazu; Kawabata, Hiroshi; Matsushige, Kazumi</td>
</tr>
<tr>
<td>Citation</td>
<td>Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008), pp.20-21</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-01-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/9837</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>ชื่อเรื่องของเอกสาร</th>
<th>รายละเอียดเรื่องราวที่สำคัญที่เกี่ยวข้องกับการเรียนรู้ที่มีความสำคัญ</th>
<th>หมายเหตุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>บทความวิจัย</td>
<td>การศึกษาทฤษฎีเกี่ยวกับความมีประสิทธิภาพการส่งความชื้นของ Fullerene Hydrides C(_{60})H(2) และ C({60})H(_4)</td>
<td>รายละเอียด</td>
</tr>
</tbody>
</table>

หมายเหตุ:

NAOSITE: Nagasaki university’s Academic Output SITE | http://naosite.lb.nagasaki-u.ac.jp
Theoretical Study on the Hole-Transport Property of Fullerene Hydrides C_{60}H_{2} and C_{60}H_{4}

Ken Tokunaga¹*, Shigekazu Ohmori²**, Hiroshi Kawabata²,³ and Kazumi Matsushige²,³

¹ Research and Development Center for Higher Education
Kyushu University, Fukuoka 810-8560, Japan
² Venture Business Laboratory, Kyoto University, Kyoto 615-8501, Japan, ³ Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
* Tel:+81-92-726-4742, Fax:+81-92-726-4842, E-mail: tokunaga@rche.kyushu-u.ac.jp
** Present Address: National Institute of Advanced Industrial and Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

Abstract
Hole-transport property of C_{60}H_{2} [1] and C_{60}H_{4} [2] is discussed from the viewpoint of reorganization energy λ and hole-transfer rate constant k_{ht}, comparing with that of C_{60}. All synthesized isomers [3] of C_{60}H_{2} and C_{60}H_{4} have better hole-transport property than C_{60}. It is also revealed that the hole-transport property is closely related to the delocalization of HOMO.

Introduction
Organic materials, which have lightness, flexibility, and are environmentally-friendly, are expected as essential parts of organic light-emitting devices (OLEDs) and organic field-effect transistors (OFETs). In these organic devices, hole mobility in the organic hole-transport material is one of the most important properties in the performance, therefore, the development of new material with good hole-transport property are matters of great urgency.

In the present study, we focus on the hole-transport property of fullerene hydrides C_{60}H_{2} [1] and C_{60}H_{4} [2], comparing with that of C_{60}. Hydrogenation has much influence on the hole-transport property of the C_{60} material because it removes electronic degeneracy of C_{60}⁺. Potential utility of C_{60}H_{2} and C_{60}H_{4} as hole-transport material is discussed from the viewpoint of reorganization energy λ and hole-transfer rate constant k_{ht}.

Computational Method
In Marcus theory, k_{ht} of a hole-transfer reaction between two equivalent molecules M(A) and M(B) is represented as

$$k_{ht} = \frac{4\pi^2}{h} \frac{H_{AB}^2}{\sqrt{4\pi \lambda k_B T}} e^{-\lambda/4k_B T}.$$

Thus, k_{ht} is mainly dependent on λ and the electronic coupling H_{AB}. Assuming that H_{AB} is the same for all molecules, smaller λ simply results in the larger k_{ht}. The calculation of λ and k_{ht} is performed by the density functional theory (B3LYP/6-311G(d)) using Gaussian 03.

Results and Discussions
For selected 11 isomers of C_{60}H_{2} and 9 isomers of C_{60}H_{4} shown in Fig. 1, λ and k_{ht} were calculated on the assumption that H_{AB} is the same for all molecules.
(See Fig. 2). $C_{60}H_2$ isomers overall tend to have good hole-transport property than C_{60}. Synthesized isomers $[3] \ a$ and $2a$ of $C_{60}H_2$ have 20% smaller λ than C_{60}, and k_{ht} of these are about 1.5 times as large as that of C_{60}. Also, isomer 1 of $C_{60}H_4$, which is the major product of the synthesis, has 50% smaller λ, and its k_{ht} is about 3.3 times. These results indicate that some isomers of $C_{60}H_2$ and $C_{60}H_4$ have potential utility as hole-transport material.

Figure 3(a) shows HOMO of $C_{60}H_4$ isomer 1 with the largest k_{ht} and that of 2 with the smallest k_{ht}. It is found that 1 with more delocalized HOMO has larger k_{ht} than 2. This result coincides with the intuitive picture of the hole hopping illustrated in Fig. 3(b).

Conclusions We studied the hole-transport property of $C_{60}H_2$ and $C_{60}H_4$ in terms of λ and k_{ht}. The major findings are as follows: i) the synthesized isomers of $C_{60}H_2$ and $C_{60}H_4$ have great potential as hole-transport material, ii) λ and k_{ht} are closely related to the delocalization of HOMO.

Acknowledgements The authors are thankful to Dr. S. Nishimura of Kyoto University for the meaningful discussion on the patent about the synthesis of the fullerene hydrides $[3]$.