<table>
<thead>
<tr>
<th>Title</th>
<th>Efficient Total Syntheses of Heterocyclic Marine Alkaloids, Lamellarins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohta, Takeshi; Fukuda, Tsutomu; Ishibashi, Fumito; Iwao, Masatomo</td>
</tr>
<tr>
<td>Citation</td>
<td>Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008), pp.91</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-01-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10069/9869</td>
</tr>
</tbody>
</table>

NAOSITE: Nagasaki University’s Academic Output SITE

NAOSITE
Nagasaki university’s Academic Output SITE
Efficient Total Syntheses of Heterocyclic Marine Alkaloids, Lamellarins

Takeshi Ohta¹, Tsutomu Fukuda¹, Fumito Ishibashi¹ and Masatomo Iwao²*

¹Graduate School of Science and Technology and
²Department of Applied Chemistry, Faculty of Engineering,
Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
*Tel: +81-95-819-2681, Fax: +81-95-819-2681, E-mail: iwao@nagasaki-u.ac.jp

Lamellarins possessing a common 1-phenyl-6H-[1]benzopyrano-[4',3':4,5]pyrrolo[2,1-a]isoquinoline scaffold have been isolated from a marine prosoblanch mollusk, ascidians, and sponges. Many lamellarins exhibit unique and highly useful biological activities such as cytotoxicity against MDR tumor cell lines, MDR reversal, and HIV-1 integrase-inhibitory activities. Due to such activities and their unique structures, a number of synthetic approaches have been developed.¹

Recently, we have devised an efficient method to construct 3,4-diarylpyrrole marine alkaloids by combinational use of Hinsberg-type pyrrole synthesis and palladium-catalyzed Suzuki cross-coupling of the 3,4-dihydroxypyrrole bis-triflate derivatives as key reactions.² The strategy has been successfully applied to the total synthesis of lamellarin D, L, N and α-20-sulfate.³,⁴

References