Efficient Total Syntheses of Heterocyclic Marine Alkaloids, Lamellarins

Author(s)
Ohta, Takeshi; Fukuda, Tsutomu; Ishibashi, Fumito; Iwao, Masatomo

Citation
Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008), pp.91

Issue Date
2008-01-29

URL
http://hdl.handle.net/10069/9869

NAOSITE: Nagasaki University’s Academic Output SITE
http://naosite.lb.nagasaki-u.ac.jp
Efficient Total Syntheses of Heterocyclic Marine Alkaloids, Lamellarins

Takeshi Ohta1, Tsutomu Fukuda1, Fumito Ishibashi1 and Masatomo Iwao2*

1Graduate School of Science and Technology and 2Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
*Tel: +81-95-819-2681, Fax: +81-95-819-2681, E-mail: iwao@nagasaki-u.ac.jp

Lamellarins possessing a common 1-phenyl-6H-[1]benzopyran-4’,3’-4,5]-pyrrol[2,1-a]isoquinoline scaffold have been isolated from a marine prosoblanch mollusk, ascidians, and sponges. Many lamellarins exhibit unique and highly useful biological activities such as cytotoxicity against MDR tumor cell lines, MDR reversal, and HIV-1 integrase-inhibitory activities. Due to such activities and their unique structures, a number of synthetic approaches have been developed.1

Recently, we have devised an efficient method to construct 3,4-diarylpyrrole marine alkaloids by combinational use of Hinsberg-type pyrrole synthesis and palladium-catalyzed Suzuki cross-coupling of the 3,4-dihydroxypyrrrole bis-triflate derivatives as key reactions.2 The strategy has been successfully applied to the total synthesis of lamellarin D, L, N and α 20-sulfate.3,4

References