DSpace university logo mark
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > 110 医歯薬学総合研究科 > 110 学術雑誌論文 >

A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.

ファイル 記述 サイズフォーマット
NeuInt54_253.pdf2.65 MBAdobe PDF本文ファイル

タイトル: A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
著者: Nakagawa, Shinsuke / Deli, Mária A / Kawaguchi, Hiroko / Shimizudani, Takeshi / Shimono, Takanori / Kittel, Agnes / Tanaka, Kunihiko / Niwa, Masami
発行日: 2009年 3月
出版者: Elsevier Ltd
引用: Neurochemistry international, 54(3-4), pp.253-263; 2009
抄録: Blood-brain barrier (BBB) characteristics are induced and maintained by cross-talk between brain microvessel endothelial cells and neighbouring elements of the neurovascular unit. While pericytes are the cells situated closest to brain endothelial cells morphologically and share a common basement membrane, they have not been used in co-culture BBB models for testing drug permeability. We have developed and characterized a new syngeneic BBB model using primary cultures of the three main cell types of cerebral microvessels. The co-culture of endothelial cells, pericytes and astrocytes mimick the anatomical situation in vivo. In the presence of both pericytes and astrocytes rat brain endothelial cells expressed enhanced levels of tight junction (TJ) proteins occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. Further morphological evidence of the presence of interendothelial TJs was provided by electron microscopy. The transendothelial electrical resistance (TEER) of brain endothelial monolayers in triple co-culture, indicating the tightness of TJs reached 400Omegacm(2) on average, while the endothelial permeability coefficients (P(e)) for fluorescein was in the range of 3x10(-6)cm/s. Brain endothelial cells in the new model expressed glucose transporter-1, efflux transporters P-glycoprotein and multidrug resistance protein-1, and showed a polarized transport of rhodamine 123, a ligand for P-glycoprotein. To further characterize the model, drug permeability assays were performed using a set of 19 compounds with known in vivo BBB permeability. Good correlation (R(2)=0.89) was found between in vitroP(e) values obtained from measurements on the BBB model and in vivo BBB permeability data. The new BBB model, which is the first model to incorporate pericytes in a triple co-culture setting, can be a useful tool for research on BBB physiology and pathology and to test candidate compounds for centrally acting drugs.
キーワード: Astrocytes / Blood-brain barrier / Brain endothelial cells / Co-culture / Drug permeability / In vitro BBB model (rat) / P-Glycoprotein / Pericytes / Tight junction / Transendothelial electrical resistance
URI: http://hdl.handle.net/10069/22258
ISSN: 01970186
DOI: 10.1016/j.neuint.2008.12.002
PubMed ID: 19111869
権利: Copyright © 2008 Elsevier Ltd All rights reserved.
資料タイプ: Journal Article
原稿種類: author
出現コレクション:110 学術雑誌論文

引用URI : http://hdl.handle.net/10069/22258



Valid XHTML 1.0! Copyright © 2006-2015 長崎大学附属図書館 - お問い合わせ Powerd by DSpace