DSpace university logo mark
Advanced Search
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > Graduate School of Biomedical Sciences > Articles in academic journal >

Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata

File Description SizeFormat
PLoSPat9_1003160.pdf2.77 MBAdobe PDFView/Open

Title: Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata
Authors: Miyazaki, Taiga / Nakayama, Hironobu / Nagayoshi, Yohsuke / Kakeya, Hiroshi / Kohno, Shigeru
Issue Date: 31-Jan-2013
Publisher: Public Library of Science
Citation: PLoS Pathogens, 9(1), e1003160; 2013
Abstract: Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.
URI: http://hdl.handle.net/10069/31913
DOI: 10.1371/journal.ppat.1003160
Rights: © 2013 Miyazaki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Type: Journal Article
Text Version: publisher
Appears in Collections:Articles in academic journal

Citable URI : http://hdl.handle.net/10069/31913

All items in NAOSITE are protected by copyright, with all rights reserved.


Valid XHTML 1.0! Copyright © 2006-2015 Nagasaki University Library - Feedback Powerd by DSpace