DSpace university logo mark
Advanced Search
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > Faculty of Education > Bulletin > Science bulletin of the Faculty of Education, Nagasaki University > No. 31 >

On Class Numbers of Hyperelliptic Function Fields-2


File Description SizeFormat
kyoikuS31_001.pdf206.91 kBAdobe PDFView/Open

Title: On Class Numbers of Hyperelliptic Function Fields-2
Authors: Washio, Tadashi
Issue Date: 29-Feb-1980
Publisher: 長崎大学教育学部
Citation: 長崎大学教育学部自然科学研究報告. vol.31, p.1-4; 1980
Abstract: Let F=GF (p) be a finite prime field of characteristic p≠2. Let K=F(x, y) be an algebraic functicon field over F defined by an equation y2=xn - a (a≠0, a∈F), where n means an odd number so that n > 1 and p∤n. Let h be the class number of K and g the genus of K..Then, it is obvious that h=p +1 if n=3 and p≡2 mod 3. This particular fact can be generally expressed as follows; Given n, there exists an integer c such that h= (p +1)g whenever p≡c mod n. In this note, it is shown that this generalization is true in the particular case of n=5 and of n=7.
URI: http://hdl.handle.net/10069/32669
ISSN: 0386443X
Type: Departmental Bulletin Paper
Text Version: publisher
Appears in Collections:No. 31

Citable URI : http://hdl.handle.net/10069/32669

All items in NAOSITE are protected by copyright, with all rights reserved.

 

Valid XHTML 1.0! Copyright © 2006-2015 Nagasaki University Library - Feedback Powerd by DSpace