DSpace university logo mark
Advanced Search
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > School of Medicine > Articles in academic journal >

Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion

File Description SizeFormat
BMCMB14_234.pdf939.24 kBAdobe PDFView/Open

Title: Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion
Authors: Yoda, Itaru / Koseki, Hironobu / Tomita, Masato / Shida, Takayuki / Horiuchi, Hidehiko / Sakoda, Hideyuki / Osaki, Makoto
Issue Date: 2-Aug-2014
Publisher: BioMed Central
Citation: BMC Microbiology, 14(1), 234; 2014
Abstract: Background: Implant-related infections are caused by adhesion of bacteria to the surface of biomaterials. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis (ATCC35984) to adhere to the surface of solid biomaterials at different levels of roughness below 30 nm Ra and investigated the minimum level of roughness required to promote bacterial adhesion on five kinds of biomaterials: oxidized zirconium-niobium alloy (Oxinium), cobalt-chromium-molybdenum alloy (Co-Cr-Mo), titanium alloy (Ti-6Al-4 V), commercially pure titanium (Cp-Ti) and stainless steel (SUS316L), samples of which were categorized into a fine group and a coarse group according to surface roughness. The test specimens were physically analyzed and the viable bacterial density of the adhered bacteria was quantitatively determined (n = 20). Results: The amount of bacteria that adhered to the biomaterials in the coarse group was higher than those in the fine group. Oxinium, Ti-6Al-4 V and SUS316L in particular demonstrated statistically significant differences between the two groups (P < 0.05). Of the materials, the Co-Cr-Mo specimens exhibited significantly lower amounts of adhered bacteria than the Ti-6Al-4 V, Cp-Ti and SUS316L specimens in the fine group. Similarly, the Co-Cr-Mo specimens in the coarse group exhibited significantly lower values than the other four materials. Conclusions: These results suggest that minimum level of roughness affecting initial bacterial adherence activity differs according to the type of biomaterial used, and that even a surface roughness of below 30 nm Ra in Oxinium, Ti-6Al-4 V and SUS316L can promote bacterial adhesion. Relative hydrophobic Co-Cr-Mo surfaces were less susceptible to bacterial adherence.
Keywords: Bacterial adhesion / Biomaterials / Roughness / Staphylococcus epidermidis
URI: http://hdl.handle.net/10069/34816
ISSN: 14712180
DOI: 10.1186/s12866-014-0234-2
Rights: © 2014 Yoda et al.; licensee BioMed Central Ltd. / This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Type: Journal Article
Text Version: publisher
Appears in Collections:Articles in academic journal

Citable URI : http://hdl.handle.net/10069/34816

All items in NAOSITE are protected by copyright, with all rights reserved.


Valid XHTML 1.0! Copyright © 2006-2015 Nagasaki University Library - Feedback Powerd by DSpace