DSpace university logo mark
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > 080 水産学部 > 080 紀要 > 長崎大学水産学部研究報告 > 第97号 >


ファイル 記述 サイズフォーマット
suisan97_11.pdf1.15 MBAdobe PDF本文ファイル

タイトル: 閉鎖性内湾における光合成硫黄細菌由来有機物の高次捕食者への転送に関する基礎的研究
その他のタイトル: The transfer of photosynthetic sulfur bacteria-derived organic matter to the organisms at a higher trophic level at a semi-closed bay
著者: 市川, 好貴 / 梅澤, 有 / 山喜, 邦次 / 島塚, 桃子 / 和田, 実
著者(別表記) : Ichikawa, Yoshitaka / Umezawa, Yu / Yamaki, Kunitsugu / Shimatsuka, Momoko / Wada, Minoru
発行日: 2016年 3月
出版者: 長崎大学水産学部 / The Faculty of Fisheries, Nagasaki University
引用: 長崎大学水産学部研究報告, 97, pp.11-17; 2016
抄録: Hypoxic water mass often formed in semi-closed bay during summer causes mass death events of the benthic organisms due to anoxic water at the bottom layer. On the other hand, autotrophic bacteria which proliferate in the anoxic condition may partially contribute to biological production in the bay, as food source for the heterotrophs inhabiting outside the hypoxic water mass. In this study, we investigated whether the organic matter derived from photosynthetic sulfur bacteria, a species of anaerobic autotrophic bacteria which were incubated from the bottom sediment in the Omura Bay, were actually assimilated by benthic filter feeders, based on the stable isotopes (13C, 15N)-labeled techniques. First, 13C, 15N-labeled bacteria were fed to a bivalve, Anadara broughtonii. And carbon (C) and nitrogen (N) assimilation rates were determined, and compared with the results from the control experiments in which labeled phytoplankton were fed. The assimilations of bacteria-derived organic C and N into the muscle tissue in A. broughtonii were surely confirmed, although the assimilation rates were greatly smaller than those of phytoplankton-derived organic matter (i.e., 1/36 for C, 1/6 for N). The lower assimilation rate of C compared with N in either of the food sources (i.e., 50% in case of phytoplankton, and 10% bacteria) suggested that newly incorporated C was promptly metabolized as respiratory substrate. The results of this study suggested that an increase in the biomass of anaerobic autotrophic bacteria associated with hypoxic water mass contributes to biological production in the inner bay as one of food sources.
キーワード: 嫌気性独立栄養細菌 / anaerobic autotrophic bacteria / 光合成硫黄細菌 / photosynthetic sulfur bacteria / 貧酸素水塊 / hypoxic water mass / 濾過食動物 / filter feeders / 安定同位体標識 / stable isotopes labeling / 閉鎖性内湾 / semi-closed bay
URI: http://hdl.handle.net/10069/36364
ISSN: 05471427
資料タイプ: Departmental Bulletin Paper
原稿種類: publisher

引用URI : http://hdl.handle.net/10069/36364



Valid XHTML 1.0! Copyright © 2006-2015 長崎大学附属図書館 - お問い合わせ Powerd by DSpace