DSpace university logo mark
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > 070 環境科学部 > 070 学術雑誌論文 >

Groundwater geochemistry of a nitrate-contaminated agricultural site

ファイル 記述 サイズフォーマット
EES75_1145.pdf2.13 MBAdobe PDF本文ファイル

タイトル: Groundwater geochemistry of a nitrate-contaminated agricultural site
著者: Amano, Hiroki / Nakagawa, Kei / Berndtsson, Ronny
発行日: 2016年 8月
出版者: Springer-Verlag
引用: Environmental Earth Sciences, 75(15), art. no.1145; 2016
抄録: Groundwater samples were collected from several soil depths down to 50 m below soil surface to investigate vertical profiles of NO3− and hydrogeochemical characteristics of the experimental site. The experimental site is located in the Shimabara City, Nagasaki, Japan, where nitrate contamination in groundwater is severe due to intensive agricultural production. A transition zone regarding dissolved ions was found between specific depths caused by differences in the permeability of soil layers. Though NO3− concentration decreased significantly in the transition zone, the entire soil depth exceeded permissible levels (50 mg L−1) for drinking purposes. Comparing the temporal NO3− fluctuation above the transition zone with that of the below, distinct fluctuations were observed depending on sampling campaign. High rainfall amounts typically lead to initial decrease in NO3− concentration for the shallow groundwater. After some time, however, increase in NO3− concentration occurred due to leaching of accumulated NO3− in the soil matrix. This indicated that temporal NO3− fluctuation is mainly controlled by natural impact and occurring crop system. Results of principal component analysis suggested that application of chemical fertilizers [(NH4)2SO4, NH4NO3, and KCl], dissolution of minerals (feldspar, calcite, and dolomite), and ion exchange are the predominant factors resulting in the observed vertical groundwater chemistry. The relative magnitude of these three principal component scores changed across the transition zone. Below the transition zone, groundwater geochemistry reflected application of NH4NO3 and KCl fertilizer and dissolution of albite and orthoclase.
キーワード: Groundwater / Nitrate contamination / Vertical profile / Nitrate fluctuation / Principal component analysis
URI: http://hdl.handle.net/10069/37001
ISSN: 18666280
DOI: 10.1007/s12665-016-5968-8
権利: © Springer-Verlag Berlin Heidelberg 2016 / The final publication is available at link.springer.com
資料タイプ: Journal Article
原稿種類: author
出現コレクション:070 学術雑誌論文

引用URI : http://hdl.handle.net/10069/37001



Valid XHTML 1.0! Copyright © 2006-2015 長崎大学附属図書館 - お問い合わせ Powerd by DSpace