DSpace university logo mark
Advanced Search
Japanese | English 

NAOSITE : Nagasaki University's Academic Output SITE > Atomic Bomb Disease Institute > Articles in academic journal >

Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats—Part 2: pathological effects

File Description SizeFormat
REB56_55.pdf1.13 MBAdobe PDFView/Open

Title: Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats—Part 2: pathological effects
Authors: Shichijo, Kazuko / Fujimoto, Nariaki / Uzbekov, Darkhan / Kairkhanova, Ynkar / Saimova, Aisulu / Chaizhunusova, Nailya / Sayakenov, Nurlan / Shabdarbaeva, Dariya / Aukenov, Nurlan / Azimkhanov, Almas / Kolbayenkov, Alexander / Mussazhanova, Zhanna / Niino, Daisuke / Nakashima, Masahiro / Zhumadilov, Kassym / Stepanenko, Valeriy / Tomonaga, Masao / Rakhypbekov, Tolebay / Hoshi, Masaharu
Issue Date: Mar-2017
Publisher: Springer New York
Citation: Radiation and Environmental Biophysics, 56(1), pp.55-61; 2017
Abstract: To fully understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil and other materials should be considered in addition to the initial radiation directly received from the bombs. This might be important for evaluating the radiation risks to the people who moved to these cities soon after the detonations and probably inhaled activated radioactive “dust.” Manganese-56 is known to be one of the dominant radioisotopes produced in soil by neutrons. Due to its short physical half-life, 56Mn emits residual radiation during the first hours after explosion. Hence, the biological effects of internal exposure of Wistar rats to 56Mn were investigated in the present study. MnO2 powder was activated by a neutron beam to produce radioactive 56Mn. Rats were divided into four groups: those exposed to 56Mn, to non-radioactive Mn, to 60Co γ rays (2 Gy, whole body), and those not exposed to any additional radiation (control). On days 3, 14, and 60 after exposure, the animals were killed and major organs were dissected and subjected to histopathological analysis. As described in more detail by an accompanying publication, the highest internal radiation dose was observed in the digestive system of the rats, followed by the lungs. It was found that the number of mitotic cells increased in the small intestine on day 3 after 56Mn and 60Co exposure, and this change persisted only in 56Mn-exposed animals. Lung tissue was severely damaged only by exposure to 56Mn, despite a rather low radiation dose (less than 0.1 Gy). These data suggest that internal exposure to 56Mn has a significant biological impact on the lungs and small intestine.
Keywords: A-bombing / Internal radiation exposure / Lung / Manganese-56 / Rats
URI: http://hdl.handle.net/10069/37443
ISSN: 0301634X
DOI: 10.1007/s00411-016-0676-z
Rights: © The Author(s) 2017 / This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Type: Journal Article
Text Version: publisher
Appears in Collections:Articles in academic journal

Citable URI : http://hdl.handle.net/10069/37443

All items in NAOSITE are protected by copyright, with all rights reserved.


Valid XHTML 1.0! Copyright © 2006-2015 Nagasaki University Library - Feedback Powerd by DSpace